Gan, S. D. and Patel, K. R. (2013). Enzyme immunoassay
and enzyme-linked immunosorbent assay. The Jour-
nal of Investigative Dermatology, 133(9):1–3.
Giebel, K.-F., Bechinger, C. S., Herminghaus, S., Riedel,
M., Leiderer, P., Weiland, U. M., and Bastmeyer, M.
(1999). Imaging of Cell/Substrate Contacts of Living
Cells with Surface Plasmon Resonance Microscopy.
Bibliothek der Universit
¨
at Konstanz, Konstanz, Ger-
many.
Gonzalez, R. C. and Woods, R. E. (2006). Digital Image
Processing (3rd Edition). Prentice-Hall, Inc, Upper
Saddle River, NJ, USA.
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann,
P., and Witten, I. H. (2009). The weka data mining
software: An update. ACM SIGKDD Explorations
Newsletter, 11(1):10–18.
Hecht-Nielsen, R. et al. (1988). Theory of the backpropaga-
tion neural network. Neural Networks, 1(Supplement-
1):445–448.
Iandola, F. N., Moskewicz, M. W., Ashraf, K., Han, S.,
Dally, W. J., and Keutzer, K. (2016). Squeezenet:
Alexnet-level accuracy with 50x fewer parameters and
<1mb model size. CoRR, abs/1602.07360.
Karpathy, A., Toderici, G., Shetty, S., Leung, T., Suk-
thankar, R., and Li, F.-F. (2014). Large-scale video
classification with convolutional neural networks. In
2014 IEEE Conference on Computer Vision and Pat-
tern Recognition, CVPR 2014, Columbus, OH, USA,
June 23-28, 2014, pages 1725–1732.
Kingma, D. P. and Ba, J. (2014). Adam: A method for
stochastic optimization. In Proceedings of the 3rd In-
ternational Conference on Learning Representations
(ICLR).
Kohavi, R. (1995). Wrappers for Performance Enhance-
ment and Oblivious Decision Graphs. PhD thesis,
Stanford University, Department of Computer Sci-
ence, Stanford University.
Kretschmann, E. (1971). The determination of the optical
constants of metals by excitation of surface plasmons.
European Physical Journal A, 241(4):313–324.
LeCun, Y., Bengio, Y., et al. (1995). Convolutional net-
works for images, speech, and time series. The
handbook of brain theory and neural networks,
3361(10):1995.
Lenssen, J. E., Shpacovitch, V., and Weichert, F. (2017).
Real-time virus size classification using surface plas-
mon pamono resonance and convolutional neural net-
works. In Maier-Hein, K. H., Deserno, T. M., Han-
dels, H., and Tolxdorff, T., editors, Bildverarbeitung
f
¨
ur die Medizin 2017, Informatik Aktuell, pages 98–
103. Springer, Berlin, Germany and Heidelberg, Ger-
many.
Libuschewski, P. (2017). Exploration of Cyber-Physical
Systems for GPGPU Computer Vision-Based Detec-
tion of Biological Viruses . PhD thesis, TU Dortmund,
Dortmund, Germany.
Liu, J., White, J. M., and Summers, R. M. (2010). Auto-
mated detection of blob structures by hessian analysis
and object scale. In Image Processing (ICIP). 17th
IEEE International Conference on, pages 841–844.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
IEEE Conference on Computer Vision and Pattern
Recognition, CVPR 2015, Boston, MA, USA, June 7-
12, 2015, pages 3431–3440.
Moon, W. K., Shen, Y.-W., Bae, M. S., Huang, C.-S., Chen,
J.-H., and Chang, R.-F. (2013). Computer-aided tumor
detection based on multi-scale blob detection algo-
rithm in automated breast ultrasound images. Medical
Imaging. IEEE Transactions on, 32(7):1191–1200.
Naimushin, A. N., Soelberg, S. D., Bartholomew, D. U.,
Elkind, J. L., and Furlong, C. E. (2003). A portable
surface plasmon resonance (spr) sensor system with
temperature regulation. Sensors and Actuators B:
Chemical, 96(1-2):253–260.
Pattnaik, P. (2005). Surface plasmon resonance: Applica-
tions in understanding receptor-ligand interaction. Ap-
plied Biochemistry and Biotechnology, 126(2):79–92.
Powers, D. M. W. (2011). Evaluation: From precision, re-
call and f-measure to roc., informedness, markedness
& correlation. Journal of Machine Learning Tech-
nologies, 2(1):37–63.
Scarano, S., Ermini, M. L., Mascini, M., and Minunni,
M. (2011). Surface plasmon resonance imaging for
affinity-based sensing: An analytical approach. In
BioPhotonics. International Workshop on, pages 957–
966.
Shpacovitch, V., Temchura, V., Matrosovich, M.,
Hamacher, J., Skolnik, J., Libuschewski, P., Siedhoff,
D., Weichert, F., Marwedel, P., M
¨
uller, H.,
¨
Uberla, K.,
Hergenr
¨
oder, R., and Zybin, A. (2015). Application
of surface plasmon resonance imaging technique for
the detection of single spherical biological submi-
crometer particles. Analytical Biochemistry: Methods
in the Biological Sciences, 486:62–69.
Siedhoff, D. (2016). A parameter-optimizing model-based
approach to the analysis of low-snr image sequences
for biological virus detection. phd, Universit
¨
at Dort-
mund. Publikation.
Siedhoff, D., Libuschewski, P., Weichert, F., Zybin, A.,
Marwedel, P., and M
¨
uller, H. (2014). Modellierung
und optimierung eines biosensors zur detektion viraler
strukturen. In Deserno, T. M., Handels, H., Meinzer,
H.-P., and Tolxdorff, T., editors, Bildverarbeitung f
¨
ur
die Medizin (BVM), Informatik Aktuell, pages 108–
113. Springer, Berlin, Germany and Heidelberg, Ger-
many.
Smal, I., Loog, M., Niessen, W., and Meijering, E. (2009).
Quantitative comparison of spot detection methods
in live-cell fluorescence microscopy imaging. In
Biomedical Imaging: From Nano to Macro. IEEE In-
ternational Symposium on, pages 1178–1181.
Steiner, G. and Salzer, R. (2001). Biosensors based on spr
imaging. In T
¨
ubingen, U., editor, 2. BioSensor Sym-
posium, T
¨
ubingen, Germany. Universit
¨
at T
¨
ubingen.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 1–9. IEEE.
BIOSIGNALS 2018 - 11th International Conference on Bio-inspired Systems and Signal Processing
46