Fenwick, D. and Batycky, R. (2011). Using metric space
methods to analyse reservoir uncertainty. In Proceed-
ings of the 2011 Gussow Conference.
Fofonov, A., Molchanov, V., and Linsen, L. (2016). Visual
analysis of multi-run spatio-temporal simulations us-
ing isocontour similarity for projected views. IEEE
transactions on visualization and computer graphics,
22(8):2037–2050.
France, S. L. and Carroll, J. D. (2011). Two-way multidi-
mensional scaling: A review. IEEE Transactions on
Systems, Man, and Cybernetics, Part C (Applications
and Reviews), 41(5):644–661.
Goshtasby, A. A. (2012). Image registration: Principles,
tools and methods. Springer Science & Business Me-
dia.
Haidacher, M., Bruckner, S., Kanitsar, A., and Gr
¨
oller,
M. E. (2008). Information-based transfer functions for
multimodal visualization. In VCBM, pages 101–108.
Honarkhah, M. and Caers, J. (2010). Stochastic simula-
tion of patterns using distance-based pattern model-
ing. Mathematical Geosciences, 42(5):487–517.
Huttenlocher, D. P., Klanderman, G. A., and Rucklidge,
W. J. (1993). Comparing images using the hausdorff
distance. IEEE Transactions on pattern analysis and
machine intelligence, 15(9):850–863.
Idrobo, E. A., Choudhary, M. K., Datta-Gupta, A., et al.
(2000). Swept volume calculations and ranking of
geostatistical reservoir models using streamline sim-
ulation. In SPE/AAPG Western Regional Meeting. So-
ciety of Petroleum Engineers.
Kao, D., Luo, A., Dungan, J. L., and Pang, A. (2002). Vi-
sualizing spatially varying distribution data. In Infor-
mation Visualisation, 2002. Proceedings. Sixth Inter-
national Conference on, pages 219–225. IEEE.
Kehrer, J., Filzmoser, P., and Hauser, H. (2010). Brush-
ing moments in interactive visual analysis. In Com-
puter Graphics Forum, pages 813–822. Wiley Online
Library.
Kehrer, J. and Hauser, H. (2013). Visualization and vi-
sual analysis of multifaceted scientific data: A sur-
vey. IEEE transactions on visualization and computer
graphics, 19(3):495–513.
Kehrer, J., Muigg, P., Doleisch, H., and Hauser, H. (2011).
Interactive visual analysis of heterogeneous scientific
data across an interface. IEEE Transactions on Visu-
alization and Computer Graphics, 17(7):934–946.
Li, S., Deutsch, C. V., and Si, J. (2012). Ranking geostatisti-
cal reservoir models with modified connected hydro-
carbon volume. In Ninth International Geostatistics
Congress, pages 11–15.
Lin, D. (1998). An information-theoretic definition of sim-
ilarity. In ICML, volume 98, pages 296–304. Citeseer.
Love, A. L., Pang, A., and Kao, D. L. (2005). Visualizing
spatial multivalue data. IEEE Computer Graphics and
Applications, 25(3):69–79.
MacKay, D. J. (2003). Information theory, inference and
learning algorithms. Cambridge university press.
Nocke, T., Flechsig, M., and Bohm, U. (2007). Visual ex-
ploration and evaluation of climate-related simulation
data. In 2007 Winter Simulation Conference, pages
703–711. IEEE.
Rahim, S. and Li, Z. (2015). Reservoir geological uncer-
tainty reduction: an optimization-based method using
multiple static measures. Mathematical Geosciences,
47(4):373–396.
Scheidt, C. and Caers, J. (2010). Bootstrap confidence in-
tervals for reservoir model selection techniques. Com-
putational Geosciences, 14(2):369–382.
Scheidt, C., Caers, J., et al. (2009). Uncertainty quantifica-
tion in reservoir performance using distances and ker-
nel methods. SPE Journal, 14(04):680–692.
Sch
¨
olkopf, B., Smola, A., and M
¨
uller, K.-R. (1998). Non-
linear component analysis as a kernel eigenvalue prob-
lem. Neural computation, 10(5):1299–1319.
Scholkopf, B. and Smola, A. J. (2001). Learning with ker-
nels: support vector machines, regularization, opti-
mization, and beyond. MIT press.
Shawe-Taylor, J. and Cristianini, N. (2004). Kernel methods
for pattern analysis. Cambridge university press.
Wang, C., Yu, H., and Ma, K.-L. (2008). Importance-driven
time-varying data visualization. IEEE Transactions on
Visualization and Computer Graphics, 14(6):1547–
1554.
Williams, C. K. (2002). On a connection between kernel pca
and metric multidimensional scaling. Machine Learn-
ing, 46(1-3):11–19.
Wilson, A. T. and Potter, K. C. (2009). Toward visual anal-
ysis of ensemble data sets. In Proceedings of the 2009
Workshop on Ultrascale Visualization, pages 48–53.
ACM.
Yazdi, M. M. and Jensen, J. L. (2014). Fast screening of
geostatistical realizations for sagd reservoir simula-
tion. Journal of Petroleum Science and Engineering,
124:264–274.
Zhang, J., Huang, H., and Wang, J. (2010). Manifold learn-
ing for visualization and analyzing high dimensional
data. IEEE.
IVAPP 2018 - International Conference on Information Visualization Theory and Applications
84