proach for more than 2 classes and extend the pixel-
wise classification to different objects such as side-
walks,lane, traffic sign, vehicles, etc.
REFERENCES
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
S
¨
usstrunk, S. (2010). Slic superpixels. Technical re-
port.
Burghouts, G. J. and Geusebroek, J.-M. (2009). Perfor-
mance evaluation of local colour invariants. Computer
Vision and Image Understanding, 113(1):48–62.
Caltagirone, L., Scheidegger, S., Svensson, L., and Wa-
hde, M. (2017). Fast lidar-based road detection
using convolutional neural networks. arXiv preprint
arXiv:1703.03613.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2014). Semantic image segmentation
with deep convolutional nets and fully connected crfs.
arXiv preprint arXiv:1412.7062.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2016). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. arXiv preprint
arXiv:1606.00915.
Ciresan, D., Giusti, A., Gambardella, L. M., and Schmid-
huber, J. (2012). Deep neural networks segment neu-
ronal membranes in electron microscopy images. In
Advances in neural information processing systems,
pages 2843–2851.
Farabet, C., Couprie, C., Najman, L., and LeCun, Y.
(2013). Learning hierarchical features for scene labe-
ling. IEEE transactions on pattern analysis and ma-
chine intelligence, 35(8):1915–1929.
Fritsch, J., Kuehnl, T., and Geiger, A. (2013). A new per-
formance measure and evaluation benchmark for road
detection algorithms. In International Conference on
Intelligent Transportation Systems (ITSC).
Gadde, R., Jampani, V., Kiefel, M., Kappler, D., and Gehler,
P. V. (2016). Superpixel convolutional networks using
bilateral inceptions. In European Conference on Com-
puter Vision, pages 597–613. Springer.
Ganin, Y. and Lempitsky, V. (2014). Nˆ 4-fields: Neural
network nearest neighbor fields for image transforms.
In Asian Conference on Computer Vision, pages 536–
551. Springer.
Girshick, R., Donahue, J., Darrell, T., and Malik, J. (2014).
Rich feature hierarchies for accurate object detection
and semantic segmentation. In Proceedings of the
IEEE conference on computer vision and pattern re-
cognition, pages 580–587.
He, K., Zhang, X., Ren, S., and Sun, J. (2016). Deep resi-
dual learning for image recognition. In Proceedings of
the IEEE Conference on Computer Vision and Pattern
Recognition, pages 770–778.
He, S., Lau, R. W., Liu, W., Huang, Z., and Yang, Q. (2015).
Supercnn: A superpixelwise convolutional neural net-
work for salient object detection. International Jour-
nal of Computer Vision, 115(3):330–344.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Advances in neural information pro-
cessing systems, pages 1097–1105.
LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep lear-
ning. Nature, 521(7553):436–444.
Long, J., Shelhamer, E., and Darrell, T. (2015). Fully con-
volutional networks for semantic segmentation. In
Proceedings of the IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 3431–3440.
L
´
opez, M. B., Nieto, A., Boutellier, J., Hannuksela, J., and
Silv
´
en, O. (2014). Evaluation of real-time lbp com-
puting in multiple architectures. Journal of Real-Time
Image Processing, pages 1–22.
M. Cordts, M. Omran, S. R. T. R. M. E. R. B. U. F. S. R.
B. S. (2016). The cityscapes dataset for semantic ur-
ban scene understanding. In Proc. of the IEEE Con-
ference on Computer Vision and Pattern Recognition
(CVPR).
Mohan, R. (2014). Deep deconvolutional networks for
scene parsing. arXiv preprint arXiv:1411.4101.
Neubert, P. (2015). Superpixels and their application for
visual place recognition in changing environments.
Ning, F., Delhomme, D., LeCun, Y., Piano, F., Bottou, L.,
and Barbano, P. E. (2005). Toward automatic phe-
notyping of developing embryos from videos. IEEE
Transactions on Image Processing, 14(9):1360–1371.
Ojala, T., Pietikainen, M., and Harwood, D. (1994). Perfor-
mance evaluation of texture measures with classifica-
tion based on kullback discrimination of distributions.
In Computer Vision & Image Processing, pages 582–
585. IEEE.
Oliveira, G. L., Burgard, W., and Brox, T. (2016). Efficient
deep models for monocular road segmentation. In
Intelligent Robots and Systems (IROS),, pages 4885–
4891. IEEE.
P. Sermanet, D. Eigen, X. Z. M. M. R. F. Y. L. (2013).
Overfeat: Integrated recognition, localization and de-
tection using convolutional networks. arXiv preprint
arXiv:1312.6229.
Ren, X. and Malik, J. (2003). Learning a classification mo-
del for segmentation. In ICCV, volume 1, pages 10–
17.
Schmidhuber, J. (2015). Deep learning in neural networks:
An overview. Neural networks, 61:85–117.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
arXiv preprint arXiv:1409.1556.
Verma, A., Banerji, S., and Liu, C. (2010). A new color sift
descriptor and methods for image category classifica-
tion. In International Congress on Computer Applica-
tions and Computational Science, pages 4–6.
Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V.,
Su, Z., Du, D., Huang, C., and Torr, P. H. (2015). Con-
ditional random fields as recurrent neural networks. In
Proceedings of the IEEE International Conference on
Computer Vision, pages 1529–1537.
Superpixel-based Road Segmentation for Real-time Systems using CNN
265