REFERENCES
Barnich, O. and Van Droogenbroeck, M. (2011). Vibe: A
universal background subtraction algorithm for video
sequences. IEEE Transactions on Image processing,
20(6):1709–1724.
Bloisi, D. and Iocchi, L. (2012). Independent multi modal
background subtraction. In CompIMAGE, pages 39–
44.
Brutzer, S., H¨oferlin, B., and Heidemann, G. (2011). Eva-
luation of background subtraction techniques for vi-
deo surveillance. In Computer Vision and Pattern Re-
cognition (CVPR), 2011 IEEE Conference on, pages
1937–1944. IEEE.
Cheung, S.-C. S. and Kamath, C. (2005). Robust back-
ground subtraction wit h foreground validation for ur-
ban traffic video. EURASIP Journal on Advances in
Signal Processing, 2005(14):726261.
Elgammal, A. , Duraiswami, R., Harwood, D., and Da-
vis, L. S. (2002). Background and foreground mo-
deling using nonparametric kernel density estimation
for visual surveillance. Proceedings of the IEEE,
90(7):1151–1163.
Elhabian, S. Y., El-Sayed, K. M., and Ahmed, S. H. (2008).
Moving object detection in spatial domain using back-
ground removal techniques-state-of-art. Recent pa-
tents on computer science, 1(1):32–54.
Goyette, N., Jodoin, P.-M., Porikli, F., Konrad, J. , and
Ishwar, P. (2012). Changedetection. net: A new
change detection benchmark dataset. In Computer Vi-
sion and Pattern Recognition Workshops (CVPRW),
2012 IEEE Computer Society Conference on, pages
1–8. IEEE.
Hu, W., Tan, T., Wang, L. , and Maybank, S. (2004). A
survey on visual surveillance of object motion and
behaviors. IEEE Transactions on Systems, Man,
and Cybernetics, Part C (Applications and Reviews),
34(3):334–352.
Huynh-The, T., Banos, O., Lee, S., Kang, B. H., Kim, E.-
S., and Le-Tien, T. (2016). Nic: a robust background
extraction algorithm for foreground detection in dyna-
mic scenes. IEEE transactions on circuits and systems
for video technology.
Huynh-Thu, Q. and Ghanbari, M. (2008). Scope of validity
of psnr in i mage/video quality assessment. Electronics
letters, 44(13):800–801.
Iwata, K., Satoh, Y., Ozaki, R., and Sakaue, K. ( 2009). Ro-
bust background subtraction based on statistical reach
feature method. IEICE Trans. on Information and Sy-
stems, 92:1251–1259.
Liang, Dong Kaneko, S., Hashimoto, M., Iwata, K., and
Zhao, X. (2015). Co-occurrence probability-based
pixel pairs background model for robust object de-
tection in dynamic scenes. Pattern Recognition,
48(4):1374–1390.
Moeslund, T. B., Hilton, A., and Kr¨uger, V. (2006). A sur-
vey of advances in vision-based human motion cap-
ture and analysis. Computer vision and image under-
standing, 104(2):90–126.
Seki, M., Wada, T., Fujiwara, H., and Sumi, K. (2003).
Background subtraction based on cooccurrence of
image variations. I n Computer Vision and Pattern Re-
cognition, 2003. Proceedings. 2003 IEEE Computer
Society Conference on, volume 2, pages II–II. IEEE.
Sobral, A. (2013). Bgslibrary: An opencv c++ background
subtraction library. In IX Workshop de Visao Compu-
tacional (WVC2013), volume 7.
St-Charles, P.-L., Bilodeau, G.-A., and Bergevin, R. (2015).
Subsense: A universal change detection method with
local adaptive sensitivity. IEEE Transactions on
Image Processing, 24(1):359–373.
Stauffer, C. and Grimson, W. E. L. (1999). Adaptive
background mixture models for real-t ime tracking.
In Computer Vision and Pattern Recognition, 1999.
IEEE Computer Society Conference on., volume 2, pa-
ges 246–252. IEEE.
Vacavant, A., Chateau, T., Wilhelm, A., and Lequi`evre,
L. (2012). A benchmark dataset for outdoor fore-
ground/background extraction. In Asian Conference
on Computer Vision, pages 291–300. Springer.
Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland,
A. P. (1997). Pfinder: Real-time tracking of the hu-
man body. IEEE Transactions on pattern analysis and
machine intelligence, 19(7):780–785.
Yilmaz, A., Javed, O., and Shah, M. (2006). Object
tracking: A survey. Acm computing surveys (CSUR),
38(4):13.
Zhao, X., Satoh, Y., Takauji, H., Kaneko, S., Iwata, K., and
Ozaki, R. (2011). Object detection based on a robust
and accurate statistical multi-point-pair model. Pat-
tern Recognition, 44(6):1296–1311.
Co-occurrence Background Model with Hypothesis on Degradation Modification for Robust Object Detection