sages through user-guided filtering. IEEE Trans. Vis.
Comput. Graph., 19(12):2022–2031.
Collins, C., Viegas, F. B., and Wattenberg, M. (2009). Par-
allel Tag Clouds to explore and analyze faceted text
corpora. In 2009 IEEE Symposium on Visual Analyt-
ics Science and Technology, pages 91–98.
Correll, M., Witmore, M., and Gleicher, M. (2011). Explor-
ing collections of tagged text for literary scholarship.
Computer Graphics Forum, 30(3):731–740.
Don, A., Zheleva, E., Gregory, M., Tarkan, S., Auvil,
L., Clement, T., Shneiderman, B., and Plaisant, C.
(2007). Discovering interesting usage patterns in text
collections: Integrating text mining with visualiza-
tion. In Proceedings of the Sixteenth ACM Conference
on Conference on Information and Knowledge Man-
agement, CIKM ’07, pages 213–222, New York, NY,
USA. ACM.
El-Assady, M., Sevastjanova, R., Gipp, B., Keim, D. A.,
and Collins, C. (2017). NEREx: Named-Entity Re-
lationship Exploration in Multi-Party Conversations.
Computer Graphics Forum, 36(3):213–225.
Ellis, G. and Dix, A. (2006). Enabling automatic clut-
ter reduction in parallel coordinate plots. IEEE
Transactions on Visualization and Computer Graph-
ics, 12(5):717–724.
Fischer, F., Fuchs, J., and Mansmann, F. (2012). ClockMap:
Enhancing circular treemaps with temporal glyphs for
time-series data. Proc. EuroVis Short Papers, Euro-
graphics, pages 97–101.
Havre, S., Hetzler, E., Whitney, P., and Nowell, L. (2002).
ThemeRiver: visualizing thematic changes in large
document collections. IEEE Trans. Vis. Comput.
Graph., 8(1):9–20.
Heer, J., Card, S. K., and Landay, J. (2005). Prefuse: A
toolkit for interactive information visualization. In
ACM Human Factors in Computing Systems (CHI),
pages 421–430.
Heimerl, F., John, M., Han, Q., Koch, S., and Ertl, T.
(2016). DocuCompass: Effective exploration of docu-
ment landscapes. In 2016 IEEE Conference on Visual
Analytics Science and Technology (VAST), pages 11–
20.
Heimerl, F., Koch, S., Bosch, H., and Ertl, T. (2012). Visual
Classifier training for text document retrieval. IEEE
Trans. Vis. Comput. Graph., 18(12):2839–2848.
J
¨
anicke, S., Franzini, G., Cheema, M. F., and Scheuermann,
G. (2015). On Close and Distant Reading in Digi-
tal Humanities: A Survey and Future Challenges. In
Eurographics Conference on Visualization (EuroVis)
– STARs, EuroVis ’15. The Eurographics Association.
John, M., Lohmann, S., Koch, S., W
¨
orner, M., and Ertl, T.
(2016). Visual analysis of character and plot infor-
mation extracted from narrative text. In International
Joint Conference on Computer Vision, Imaging and
Computer Graphics, pages 220–241. Springer.
Keim, D. and Oelke, D. (2007). Literature Fingerprinting:
A new method for visual literary analysis. In Pro-
ceedings of the IEEE Symposium on Visual Analytics
Science and Technology, VAST ’07, pages 115–122.
Kim, M., Kang, K., Park, D., Choo, J., and Elmqvist, N.
(2017). TopicLens: Efficient multi-level visual topic
exploration of large-scale document collections. IEEE
Transactions on Visualization and Computer Graph-
ics, 23(1):151–160.
Koch, S., John, M., Worner, M., Muller, A., and Ertl, T.
(2014). VarifocalReader in-depth visual analysis of
large text documents. Visualization and Computer
Graphics, IEEE Transactions on, 20(12):1723–1732.
Kr
¨
uger, R., Thom, D., Wrner, M., Bosch, H., and Ertl, T.
(2013). TrajectoryLenses a set-based filtering and
exploration technique for long-term trajectory data.
Computer Graphics Forum, 32(3pt4):451–460.
Liu, S., Wu, Y., Wei, E., Liu, M., and Liu, Y. (2013).
StoryFlow: Tracking the evolution of stories. IEEE
Transactions on Visualization and Computer Graph-
ics, 19(12):2436–2445.
MacEachren, A. M., Jaiswal, A., Robinson, A. C.,
Pezanowski, S., Savelyev, A., Mitra, P., Zhang, X.,
and Blanford, J. (2011). SensePlace2: Geotwitter
analytics support for situational awareness. In Proc.
IEEE Conf. on Visual Analytics Science and Technol-
ogy (VAST), pages 181–190.
Moretti, F. (2005). Graphs, maps, trees: abstract models
for a literary history. Verso.
Oelke, D., Kokkinakis, D., and Keim, D. A. (2013). Fin-
gerprint Matrices: Uncovering the dynamics of social
networks in prose literature. Computer Graphics Fo-
rum, 32(3pt4):371–380.
Stasko, J., G
¨
org, C., and Liu, Z. (2008). Jigsaw: Support-
ing investigative analysis through interactive visual-
ization. Information Visualization, 7(2):118–132.
Tominski, C., Gladisch, S., Kister, U., Dachselt, R., and
Schumann, H. (2014). A Survey on Interactive Lenses
in Visualization. EuroVis STAR, 3.
Van der Maaten, L. and Hinton, G. (2008). Visualizing Data
using t-SNE. J. Mach. Learn. Res., 9:2579–2605.
Von Eschenbach, W., Lachmann, K., Schirok, B., et al.
(2003). Parzival. Walter de Gruyter.
Von Goethe, J. W. (1991). Die Leiden des jungen Werthers.
In ICD-10 literarisch, pages 159–170. Springer.
Vuillemot, R., Clement, T., Plaisant, C., and Kumar, A.
(2009). What’s being said near “Martha”? Explor-
ing name entities in literary text collections. In Pro-
ceedings of the IEEE Symposium on Visual Analytics
Science and Technology, 2009, VAST ’09, pages 107–
114.
Wise, J., Thomas, J., Pennock, K., Lantrip, D., Pottier,
M., Schur, A., and Crow, V. (1995). Visualizing the
non-visual: spatial analysis and interaction with in-
formation from text documents. In Proceedings of the
IEEE Symposium on Information Visualization, 1995.,
pages 51–58.
Wold, S., Esbensen, K., and Geladi, P. (1987). Principal
component analysis. Chemometrics and intelligent
laboratory systems, 2(1-3):37–52.
Visual Analysis and Exploration of Entity Relations in Document Collections
251