REFERENCES
Aladren, A., L
´
opez-Nicol
´
as, G., Puig, L., and Guerrero,
J. J. (2016). Navigation assistance for the visually im-
paired using rgb-d sensor with range expansion. IEEE
Systems Journal, 10(3):922–932.
Bay, H., Ess, A., Tuytelaars, T., and Van Gool, L. (2008).
Speeded-up robust features (surf). Computer vision
and image understanding, 110(3):346–359.
Diego, F., Ponsa, D., Serrat, J., and L
´
opez, A. M. (2011).
Video alignment for change detection. IEEE Transac-
tions on Image Processing, 20(7):1858–1869.
Fisher, R. B. (2002). The ransac (ran-
dom sample consensus) algorithm. ac.
uk/rbf/CVonline/LOCAL COPIES/FISHER/RANSAC/
index. html,[Access 23-May-2006].
Hast, A., Nysj
¨
o, J., and Marchetti, A. (2013). Optimal
ransac-towards a repeatable algorithm for finding the
optimal set.
Idrees, A., Iqbal, Z., and Ishfaq, M. (2015). An efficient
indoor navigation technique to find optimal route for
blinds using qr codes. In Industrial Electronics and
Applications (ICIEA), 2015 IEEE 10th Conference on,
pages 690–695. IEEE.
Ko, E. and Kim, E. Y. (2017). A vision-based wayfind-
ing system for visually impaired people using situa-
tion awareness and activity-based instructions. Sen-
sors, 17(8):1882.
Kong, H., Audibert, J.-Y., and Ponce, J. (2010). Detect-
ing abandoned objects with a moving camera. IEEE
Transactions on Image Processing, 19(8):2201–2210.
Laurent, B. and Christian, T. N. A. (2007). A sonar sys-
tem modeled after spatial hearing and echolocating
bats for blind mobility aid. International Journal of
Physical Sciences, 2(4):104–111.
Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond
bags of features: Spatial pyramid matching for recog-
nizing natural scene categories. In Computer vision
and pattern recognition, 2006 IEEE computer society
conference on, volume 2, pages 2169–2178. IEEE.
Lee, Y. H. and Medioni, G. (2011). Rgb-d camera based
navigation for the visually impaired. In RSS 2011
RGB-D: Advanced Reasoning with Depth Camera
Workshop, pages 1–6.
Lee, Y. H. and Medioni, G. (2014). Wearable rgbd indoor
navigation system for the blind. In European Confer-
ence on Computer Vision, pages 493–508. Springer.
Lee, Y. H. and Medioni, G. (2016). Rgb-d camera based
wearable navigation system for the visually impaired.
Computer Vision and Image Understanding, 149:3–
20.
Manduchi, R. and Kurniawan, S. (2011). Mobility-related
accidents experienced by people with visual impair-
ment. AER Journal: Research and Practice in Visual
Impairment and Blindness, 4(2):44–54.
Martinez, J. M. S. and Ruiz, F. E. (2008). Stereo-based
aerial obstacle detection for the visually impaired. In
Workshop on Computer Vision Applications for the Vi-
sually Impaired.
Padua, F., Carceroni, R., Santos, G., and Kutulakos,
K. (2010). Linear sequence-to-sequence alignment.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 32(2):304–320.
Pathangay, V. (2008). Detecting deviations in visual path
following for indoor environments. In TENCON
2008-2008 IEEE Region 10 Conference, pages 1–5.
IEEE.
Pradeep, V., Medioni, G., and Weiland, J. (2010). Robot
vision for the visually impaired. In Computer Vision
and Pattern Recognition Workshops (CVPRW), 2010
IEEE Computer Society Conference on, pages 15–22.
IEEE.
Ravichandran, A. and Vidal, R. (2011). Video registration
using dynamic textures. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 33(1):158–171.
S
´
aez, J. M. and Escolano, F. (2011). 6dof entropy minimiza-
tion slam for stereo-based wearable devices. Com-
puter Vision and Image Understanding, 115(2):270–
285.
Saez, J. M., Escolano, F., and Penalver, A. (2005).
First steps towards stereo-based 6dof slam for the
visually impaired. In Computer Vision and Pat-
tern Recognition-Workshops, 2005. CVPR Work-
shops. IEEE Computer Society Conference on, pages
23–23. IEEE.
Tresadern, P. A. and Reid, I. D. (2009). Video synchroniza-
tion from human motion using rank constraints. Com-
puter Vision and Image Understanding, 113(8):891–
906.
Ukrainitz, Y. and Irani, M. (2006). Aligning sequences and
actions by maximizing space-time correlations. Com-
puter Vision–ECCV 2006, pages 538–550.
Wang, O., Schroers, C., Zimmer, H., Gross, M., and
Sorkine-Hornung, A. (2014). Videosnapping: Interac-
tive synchronization of multiple videos. ACM Trans-
actions on Graphics (TOG), 33(4):77.
Wolf, L. and Zomet, A. (2006). Wide baseline matching be-
tween unsynchronized video sequences. International
Journal of Computer Vision, 68(1):43–52.
Yuan, D. and Manduchi, R. (2005). Dynamic environment
exploration using a virtual white cane. In Computer
Vision and Pattern Recognition, 2005. CVPR 2005.
IEEE Computer Society Conference on, volume 1,
pages 243–249. IEEE.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
562