Brin, S. and Page, L. (2012). Reprint of: The anatomy of a
large-scale hypertextual web search engine. Computer
Networks, 56(18):3825–3833.
Brunel, E., Gemsa, A., Krug, M., Rutter, I., and Wagner,
D. (2014). Generalizing geometric graphs. J. Graph
Algorithms Appl., 18(1):35–76.
Collberg, C. S., Kobourov, S. G., Nagra, J., Pitts, J., and
Wampler, K. (2003). A system for graph-based visu-
alization of the evolution of software. In ACM Symp.
on Software Visualization (SOFTVIS), pages 77–86.
ACM.
Dehkordi, H. R., Frati, F., and Gudmundsson, J. (2015).
Increasing-chord graphs on point sets. J. Graph Al-
gorithms Appl., 19(2):761–778.
Dobkin, D. P., Gansner, E. R., Koutsofios, E., and North,
S. C. (1997). Implementing a general-purpose edge
router. In Graph Drawing (GD), volume 1353 of
LNCS, pages 262–271. Springer.
Douglas, D. and Peucker, T. (1973). Algorithms for the re-
duction of the number of points required to represent
a digitized line or its caricature. The Canadian Car-
tographer, 10(2):112–122.
Dunne, C. and Shneiderman, B. (2013). Motif simplifica-
tion: improving network visualization readability with
fan, connector, and clique glyphs. In ACM SIGCHI
Conference on Human Factors in Computing Systems
(CHI), pages 3247–3256. ACM.
Dwyer, T. and Nachmanson, L. (2009). Fast edge-routing
for large graphs. In Graph Drawing (GD), volume
5849 of LNCS, pages 147–158. Springer.
Eppstein, D., Goodrich, M. T., Kim, E., and Tamstorf, R.
(2008). Motorcycle graphs: Canonical quad mesh par-
titioning. Comput. Graph. Forum, 27(5):1477–1486.
Ersoy, O., Hurter, C., Paulovich, F. V., Cantareiro, G., and
Telea, A. (2011). Skeleton-based edge bundling for
graph visualization. IEEE Trans. Vis. Comput. Graph.,
17(12):2364–2373.
Felsner, S., Igamberdiev, A., Kindermann, P., Klemz, B.,
Mchedlidze, T., and Scheucher, M. (2016). Strongly
monotone drawings of planar graphs. In Symposium
on Computational Geometry, volume 51 of LIPIcs,
pages 37:1–37:15.
Gansner, E. R., Hu, Y., and Kobourov, S. G. (2010). Gmap:
Visualizing graphs and clusters as maps. In IEEE Pa-
cific Visualization Symp. (PacificVis), pages 201–208.
Gansner, E. R., Hu, Y., North, S. C., and Scheidegger, C. E.
(2011). Multilevel agglomerative edge bundling for
visualizing large graphs. In IEEE Pacific Visualization
Symp. (PacificVis), pages 187–194.
Gansner, E. R. and Koren, Y. (2006). Improved circular
layouts. In Graph Drawing, LNCS, pages 386–398.
Springer.
Gao, R., Hu, P., and Lau, W. C. (2014). Graph property
preservation under community-based sampling. In
IEEE Global Communications Conference (GLOBE-
COM), pages 1–7.
Giyora, Y. and Kaplan, H. (2009). Optimal dynamic vertical
ray shooting in rectilinear planar subdivisions. ACM
Transactions on Algorithms, 5(3).
Guibas, L. J. and Stolfi, J. (1983). On computing all north-
east nearest neighbors in the l
1
metric. Information
Processing Letters, 17(4):219–223.
Holten, D. and van Wijk, J. J. (2009). Force-directed edge
bundling for graph visualization. Comput. Graph. Fo-
rum, 28(3):983–990.
Hu, Y. (2005). Efficient and high quality force-directed
graph drawing. The Mathematica Journal, 10:37–71.
Klimenta, M. and Brandes, U. (2012). Graph drawing
by classical multidimensional scaling: New perspec-
tives. In Graph Drawing (GD), volume 7704 of LNCS,
pages 55–66. Springer.
Lambert, A., Bourqui, R., and Auber, D. (2010). Winding
roads: Routing edges into bundles. Comput. Graph.
Forum, 29(3):853–862.
Nachmanson, L., Prutkin, R., Lee, B., Riche, N. H., Hol-
royd, A. E., and Chen, X. (2015). Graphmaps: Brows-
ing large graphs as interactive maps. In Graph Draw-
ing & Network Visualization (GD), volume 9411 of
LNCS, pages 3–15. Springer.
Orlin, J. B. (1993). A faster strongly polynomial minimum
cost flow algorithm. Operations Research, 41:377–
387.
Orlin, J. B. and Vaidyanathan, B. (2013). Fast algorithms
for convex cost flow problems on circles, lines, and
trees. Networks, 62(4):288–296.
Pupyrev, S., Nachmanson, L., Bereg, S., and Holroyd, A. E.
(2011). Edge routing with ordered bundles. In Graph
Drawing (GD), volume 7034 of LNCS, pages 136–
147. Springer.
Schaffer, D., Zuo, Z., Greenberg, S., Bartram, L., Dill, J.,
Dubs, S., and Roseman, M. (1996). Navigating hier-
archically clustered networks through fisheye and full-
zoom methods. ACM Trans. Comput.-Hum. Interact.,
3(2):162–188.
Shi, L., Liao, Q., Sun, X., Chen, Y., and Lin, C. (2013).
Scalable network traffic visualization using com-
pressed graphs. In IEEE Int. Conference on Big Data,
pages 606–612.
van der Maaten, L. and Hinton, G. E. (2008). Visualizing
data using t-SNE. Journal of Machine Learning Re-
search, 9:1–48.
van der Maaten, L. and Hinton, G. E. (2012). Visualiz-
ing non-metric similarities in multiple maps. Machine
Learning, 87(1):33–55.
Vehlow, C., Beck, F., and Weiskopf, D. (2015). The State of
the Art in Visualizing Group Structures in Graphs. In
Borgo, R., Ganovelli, F., and Viola, I., editors, Eu-
rographics Conference on Visualization (EuroVis) -
STARs. The Eurographics Association.
Wattenberg, M. (2006). Visual exploration of multivariate
graphs. In Proc. of the Conference on Human Factors
in Computing Systems (CHI), pages 811–819. ACM.
Zinsmaier, M., Brandes, U., Deussen, O., and Strobelt,
H. (2012). Interactive level-of-detail rendering of
large graphs. IEEE Trans. Vis. Comput. Graph.,
18(12):2486–2495.
A New Approach to GraphMaps, a System Browsing Large Graphs as Interactive Maps
119