IEEE Transactions on Image Processing, 22(6):2479–
2494.
Horn, B. K. and Schunck, B. G. (1981). Determining optical
flow. Artificial intelligence, 17(1-3):185–203.
Huo, J., Gao, Y., Yang, W., and Yin, H. (2012). Ab-
normal event detection via multi-instance dictionary
learning. Intelligent Data Engineering and Automated
Learning-IDEAL 2012, pages 76–83.
Lee, D.-G., Suk, H.-I., and Lee, S.-W. (2013). Crowd
behavior representation using motion influence ma-
trix for anomaly detection. In Pattern Recognition
(ACPR), 2013 2nd IAPR Asian Conference on, pages
110–114. IEEE.
Mahadevan, V., Li, W., Bhalodia, V., and Vasconcelos, N.
(2010). Anomaly detection in crowded scenes. In
Computer Vision and Pattern Recognition (CVPR),
2010 IEEE Conference on, pages 1975–1981. IEEE.
Marsden, M., McGuinness, K., Little, S., and O’Connor,
N. E. (2016). Holistic features for real-time crowd
behaviour anomaly detection. In Image Process-
ing (ICIP), 2016 IEEE International Conference on,
pages 918–922. IEEE.
Mehran, R., Oyama, A., and Shah, M. (2009). Abnormal
crowd behavior detection using social force model.
In Computer Vision and Pattern Recognition, 2009.
CVPR 2009. IEEE Conference on, pages 935–942.
IEEE.
Pennisi, A., Bloisi, D. D., and Iocchi, L. (2016). On-
line real-time crowd behavior detection in video se-
quences. Computer Vision and Image Understanding,
144:166–176.
Piciarelli, C., Micheloni, C., and Foresti, G. L. (2008).
Trajectory-based anomalous event detection. IEEE
Transactions on Circuits and Systems for video Tech-
nology, 18(11):1544–1554.
Reddy, V., Sanderson, C., and Lovell, B. C. (2011). Im-
proved anomaly detection in crowded scenes via cell-
based analysis of foreground speed, size and texture.
In Computer Vision and Pattern Recognition Work-
shops (CVPRW), 2011 IEEE Computer Society Con-
ference on, pages 55–61. IEEE.
Ryan, D., Denman, S., Fookes, C., and Sridharan, S. (2011).
Textures of optical flow for real-time anomaly de-
tection in crowds. In Advanced Video and Signal-
Based Surveillance (AVSS), 2011 8th IEEE Interna-
tional Conference on, pages 230–235. IEEE.
Sabokrou, M., Fathy, M., Hoseini, M., and Klette, R.
(2015). Real-time anomaly detection and localization
in crowded scenes. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition
Workshops, pages 56–62.
Sanin, A., Sanderson, C., Harandi, M. T., and Lovell, B. C.
(2013). Spatio-temporal covariance descriptors for ac-
tion and gesture recognition. In Applications of Com-
puter Vision (WACV), 2013 IEEE Workshop on, pages
103–110. IEEE.
Sch
¨
olkopf, B., Platt, J. C., Shawe-Taylor, J., Smola, A. J.,
and Williamson, R. C. (2001). Estimating the support
of a high-dimensional distribution. Neural computa-
tion, 13(7):1443–1471.
Shi, Y., Gao, Y., and Wang, R. (2010). Real-time abnor-
mal event detection in complicated scenes. In Pattern
Recognition (ICPR), 2010 20th International Confer-
ence on, pages 3653–3656. IEEE.
Shotton, J., Winn, J., Rother, C., and Criminisi, A. (2006).
Textonboost: Joint appearance, shape and context
modeling for multi-class object recognition and seg-
mentation. In European conference on computer vi-
sion, pages 1–15. Springer.
Tuzel, O., Porikli, F., and Meer, P. (2006). Region covari-
ance: A fast descriptor for detection and classification.
Computer Vision–ECCV 2006, pages 589–600.
Wang, C., Yao, H., and Sun, X. (2017). Anomaly detection
based on spatio-temporal sparse representation and vi-
sual attention analysis. Multimedia Tools and Appli-
cations, 76(5):6263–6279.
Wang, T. and Snoussi, H. (2015). Detection of abnor-
mal events via optical flow feature analysis. Sensors,
15(4):7156–7171.
Zhang, Y., Lu, H., Zhang, L., and Ruan, X. (2016). Com-
bining motion and appearance cues for anomaly de-
tection. Pattern Recognition, 51:443–452.
Zhu, Z., Wang, J., and Yu, N. (2016). Anomaly detec-
tion via 3d-hof and fast double sparse representation.
In Image Processing (ICIP), 2016 IEEE International
Conference on, pages 286–290. IEEE.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
286