mation provided by a T1 image. Many neuroscien-
tists use the structural information provided by a T1
image as spatial orientation. The familiarity of medi-
cal staff with slice-based data can also be considered
as an advantage of the method. Furthermore, a 2D vi-
sualization is well suited for medical documentation.
Another inherent advantage of a 2D approach is the
avoidance of occlusion.
We have shown that the visualization works also
for difficult fiber bundle configurations like crossings,
see the Figures 5b, 5c, 4b, and 4c. The visibility of
the relation between the fiber bundles and anatomy
is a strength of the visualization method, too. The
Figures 4a and 5a allow it to relate the fiber bundle to
structural information given by T1 image.
REFERENCES
Aganj, I., Lenglet, C., Sapiro, G., Yacoub, E., Ugurbil, K.
and Harel, N. (2010). Reconstruction of the orientation
distribution function in single-and multiple-shell q-ball
imaging within constant solid angle. Magnetic Reso-
nance in Medicine 64, 554–566.
Behrens, T. E., Sotiropoulos, S. N. and Jbabdi, S. (2014).
MR Diffusion Tractography. In Diffusion MRI - Sec-
ond Edition, (Johansen-Berg, H. and Behrens, T. E., eds),
chapter 19, pp. 429–451. Elsevier Inc. London.
Bresenham, J. E. (1965). Algorithm for computer control
of a digital plotter. IBM Systems journal 4, 25–30.
Cabral, B. and Leedom, L. C. (1993). Imaging Vector
Fields Using Line Integral Convolution. In Proceed-
ings of the 20th Annual Conference on Computer Graph-
ics and Interactive Techniques SIGGRAPH ’93 pp. 263–
270, ACM, New York, NY, USA.
Calamante, F., Tournier, J.-D., Heidemann, R. M., Anwan-
der, A., Jackson, G. D. and Connelly, A. (2011). Track
density imaging (TDI): validation of super resolution
property. Neuroimage 56, 1259–1266.
Dunbar, D. and Humphreys, G. (2006). A Spatial Data
Structure for Fast Poisson-disk Sample Generation. In
ACM SIGGRAPH 2006 Papers SIGGRAPH ’06 pp.
503–508, ACM, New York, NY, USA.
Eichelbaum, S., Hlawitschka, M. and Scheuermann, G.
(2013). LineAO — Improved Three-Dimensional Line
Rendering. IEEE TVCG 19, 433–445.
Fillard, P., Descoteaux, M., Goh, A., Gouttard, S., Jeuris-
sen, B., Malcolm, J., Ramirez-Manzanares, A., Reisert,
M., Sakaie, K., Tensaouti, F., Yo, T., Mangin, J.-F. and
Poupon, C. (2011). Quantitative evaluation of 10 tractog-
raphy algorithms on a realistic diffusion MR phantom.
NeuroImage 56, 220 – 234.
Garyfallidis, E., Brett, M., Correia, M. M., Williams, G. B.
and Nimmo-Smith, I. (2012). Quickbundles, a method
for tractography simplification. Frontiers in neuroscience
6, 175.
Glassner, A. (1990). Graphics Gems I.
Goldau, M., Wiebel, A., Gorbach, N. S., Melzer, C.,
Hlawitschka, M., Scheuermann, G. and Tittgemeyer, M.
(2011). Fiber Stippling: An Illustrative Rendering for
Probabilistic Diffusion Tractography. In IEEE BioVis
Proceedings pp. 23–30, IEEE.
Hlawitschka, M., Goldau, M., Wiebel, A., Heine, C. and
Scheuermann, G. (2013). Hierarchical Poisson-Disk
Sampling for Fiber Stipples. In 3rd Intl. Workshop on
VMLS pp. 19–23, Eurographics, Leipzig.
Höller, M., Otto, K. M., Klose, U., Groeschel, S. and
Ehricke, H. H. (2014). Fiber Visualization with LIC
Maps Using Multidirectional Anisotropic Glyph Sam-
ples. Journal of Biomedical Imaging 2014, 9:9–9:9.
Höller, M., Thiel, F., Otto, K.-M., Klose, U., Ehricke,
H.-H. and Schwedenschnaze, Z. (2012). Visualization
of High Angular Resolution Diffusion MRI Data with
Color-Coded LIC-Maps. In GI-Jahrestagung pp. 1112–
1124, GI.
Kindlmann, G. and Westin, C.-F. (2006). Diffusion tensor
visualization with glyph packing. IEEE Transactions on
Visualization and Computer Graphics 12.
Lazar, M., Weinstein, D. M., Tsuruda, J. S., Hasan, K. M.,
Arfanakis, K., Meyerand, M. E., Badie, B., Rowley,
H. A., Haughton, V., Field, A. et al. (2003). White matter
tractography using diffusion tensor deflection. Human
brain mapping 18, 306–321.
Mallo, O., Peikert, R., Sigg, C. and Sadlo, F. (2005). Illu-
minated lines revisited. In VIS 05. IEEE Visualization,
2005. pp. 19–26, IEEE.
Munzner, T. (2014). Visualization analysis and design.
CRC press.
Reichenbach, A., Goldau, M., Heine, C. and Hlawitschka,
M. (2015a). V-Bundles: Clustering Fiber Trajectories
from Diffusion MRI in Linear Time. In MICCAI (1),
(Navab, N., Hornegger, J., III, W. M. W. and Frangi,
A. F., eds), vol. 9349, of LNCS pp. 191–198, Springer.
Reichenbach, A., Goldau, M. and Hlawitschka, M. (2015b).
Fiber Stipples for Crossing Tracts in Probabilistic Trac-
tography. In Proc. of VCMB ’15 pp. 113–122, EG.
Tournier, J.-D., Calamante, F., Gadian, D. G. and Connelly,
A. (2004). Direct estimation of the fiber orientation den-
sity function from diffusion-weighted MRI data using
spherical deconvolution. NeuroImage 23, 1176–1185.
Tuch, D. S. (2004). Q-ball imaging. Magnetic resonance in
medicine 52, 1358–1372.
Zockler, M., Stalling, D. and Hege, H.-C. (1996). Interac-
tive visualization of 3D-vector fields using illuminated
stream lines. In Visualization’96. Proc. pp. 107–113,
IEEE.
IVAPP 2018 - International Conference on Information Visualization Theory and Applications
288