REFERENCES
Behrens, T., Rohr, K., and Stiehl, H. S. (2001). Using an
extended Hough transform combined with a Kalman
filter to segment tubular structures in 3d medical im-
ages. In Structures in 3D Medical Images. Workshop
Vision, Modeling, and Visualization, pages 491–498.
Borkar, A., Hayes, M., and Smith, M. T. (2009). Ro-
bust lane detection and tracking with RANSAC and
Kalman filter. In 16th IEEE International Conference
on Image Processing, pages 3261–3264. IEEE.
Duda, R. O. and Hart, P. E. (1972). Use of the Hough trans-
formation to detect lines and curves in pictures. Com-
munications of the ACM, 15(1):11–15.
Fontanelli, D., Macii, D., and Rizano, T. (2015). A fast and
lowcost visionbased line tracking measurement sys-
tem for robotic vehicles. Acta IMEKO, 4(2).
Foresti, G. L. (1998). A line segment based approach for
3d motion estimation and tracking of multiple objects.
International journal of pattern recognition and arti-
ficial intelligence, 12(06):881–900.
Fung, H. K. and Wong, K. H. (2013a). Quadrangle de-
tection based on a robust line tracker using multiple
Kalman models. Journal of ICT Research and Appli-
cations, 7(2):137–150.
Fung, H. K. and Wong, K. H. (2013b). A robust line track-
ing method based on a multiple model Kalman filter
model for mobile projector systems. Procedia Tech-
nology, 11:996–1002.
Garrigues, M. and Manzanera, A. (2014). Video++, a mod-
ern image and video processing C++ framework. In
Design and Architectures for Signal and Image Pro-
cessing (DASIP), 2014 Conference on, pages 1–6.
IEEE.
Garrigues, M., Manzanera, A., and Bernard, T. M. (2014).
Video extruder: a semi-dense point tracker for extract-
ing beams of trajectories in real time. Journal of Real-
Time Image Processing, pages 1–14.
Herout, A., Dubsk
´
a, M., and Havel, J. (2013). Review of
Hough transform for line detection. In Real-Time De-
tection of Lines and Grids, pages 3–16. Springer.
Hills, M., Pridmore, T., and Mills, S. (2003). Object track-
ing through a Hough space. In International Confer-
ence on Visual Information Engineering, pages 53–56.
Hough, P. V. (1962). Method and means for recognizing
complex patterns. US Patent 3,069,654.
Kim, C. and Manduchi, R. (2017). Indoor manhattan spa-
tial layout recovery from monocular videos via line
matching. Computer Vision and Image Understand-
ing, 157:223 – 239.
Kiryati, N., Eldar, Y., and Bruckstein, A. M. (1991). A
probabilistic Hough transform. Pattern Recognition,
24(4):303–316.
Manzanera, A., Nguyen, T. P., and Xu, X. (2016). Line and
circle detection using dense one-to-one Hough trans-
forms on greyscale images. EURASIP Journal on Im-
age and Video Processing, 2016(1):46.
Marchant, J. (1996). Tracking of row structure in three
crops using image analysis. Computers and electron-
ics in agriculture, 15(2):161–179.
Matas, J., Galambos, C., and Kittler, J. (2000). Robust
detection of lines using the progressive probabilistic
Hough transform. Computer Vision and Image Un-
derstanding, 78(1):119 – 137.
Mills, S., Pridmore, T. P., and Hills, M. (2003). Tracking
in a Hough space with the extended Kalman filter. In
British Machine Vision Conference, pages 1–10.
O’Gorman, F. and Clowes, M. (1976). Finding picture
edges through collinearity of feature points. IEEE
Transaction on Computers, 25(4):449–456.
Rajan, S., Wang, S., Inkol, R., and Joyal, A. (2006). Ef-
ficient approximations for the arctangent function.
IEEE Signal Processing Magazine, 23(3):108–111.
Voisin, V., Avila, M., Emile, B., Begot, S., and Bardet, J.-
C. (2005). Road markings detection and tracking us-
ing Hough transform and Kalman filter. In Advanced
Concepts for Intelligent Vision Systems, pages 76–83.
Springer.
Wang, Z., Wu, F., and Hu, Z. (2009). MSLD: A robust
descriptor for line matching. Pattern Recognition,
42(5):941 – 953.
Xu, L., Oja, E., and Kultanen, P. (1990). A new curve de-
tection method: randomized Hough transform (RHT).
Pattern recognition letters, 11(5):331–338.
Yilmaz, A., Javed, O., and Shah, M. (2006). Object track-
ing: A survey. Acm computing surveys (CSUR),
38(4):13.
Zoetgnande, Y. (2017). Videos of lines to track. https://
www.dropbox.com/sh/4x0aamffxx5c448/AACHN6K
0o6IvvIs-
PE7apAWa?dl=0. Accessed: 2017-09-11.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
180