El Jaafari, I., El Ansari, M., Koutti, L., Mazoul, A., and El-
lahyani, A. (2016). Fast spatio-temporal stereo match-
ing for advanced driver assistance systems. Neuro-
computing, 194:24–33.
Ilyas El Jaafari, Mohamed El Ansari, and Koutti, L. (2017).
Fast edge-based stereo matching approach for road
applications. Signal, Image and Video Processing,
11(2):267–274.
Mikolajczyk, K., Schmid, C., and Zisserman, A. (2004).
Human detection based on a probabilistic assembly of
robust part detectors. Computer Vision-ECCV 2004,
pages 69–82.
Mu, Y., Yan, S., Liu, Y., Huang, T., and Zhou, B. (2008).
Discriminative local binary patterns for human detec-
tion in personal album. In Computer Vision and Pat-
tern Recognition, 2008. CVPR 2008. IEEE Confer-
ence on, pages 1–8. IEEE.
Ojala, T., Pietik
¨
ainen, M., and Harwood, D. (1996). A com-
parative study of texture measures with classification
based on featured distributions. Pattern recognition,
29(1):51–59.
Papageorgiou, C. and Poggio, T. (1999). Trainable pedes-
trian detection. In Image Processing, 1999. ICIP 99.
Proceedings. 1999 International Conference on, vol-
ume 4, pages 35–39. IEEE.
Premebida, C., Ludwig, O., and Nunes, U. (2009a). Ex-
ploiting lidar-based features on pedestrian detection
in urban scenarios. In Intelligent Transportation Sys-
tems, 2009. ITSC’09. 12th International IEEE Confer-
ence on, pages 1–6. IEEE.
Premebida, C., Ludwig, O., and Nunes, U. (2009b). Lidar
and vision-based pedestrian detection system. Journal
of Field Robotics, 26(9):696–711.
Premebida, C. and Nunes, U. (2006). A multi-target track-
ing and gmm-classifier for intelligent vehicles. In
Intelligent Transportation Systems Conference, 2006.
ITSC’06. IEEE, pages 313–318. IEEE.
Premebida, C. and Nunes, U. (2016). Laser and
image pedestrian detection dataset - lipd.
http://www2.isr.uc.pt/ cpremebida/dataset/.
Prieto, M. S. and Allen, A. R. (2009). Using self-organising
maps in the detection and recognition of road signs.
Image and Vision Computing, 27(6):673–683.
Sch
¨
olkopf, B. and Smola, A. J. (2002). Learning with ker-
nels: support vector machines, regularization, opti-
mization, and beyond. MIT press.
Shechtman, E. and Irani, M. (2007). Matching local self-
similarities across images and videos. In Computer Vi-
sion and Pattern Recognition, 2007. CVPR’07. IEEE
Conference on, pages 1–8. IEEE.
Spinello, L. and Siegwart, R. (2008). Human detection
using multimodal and multidimensional features. In
Robotics and Automation, 2008. ICRA 2008. IEEE In-
ternational Conference on, pages 3264–3269. IEEE.
Streller, D. and Dietmayer, K. (2004). Object tracking and
classification using a multiple hypothesis approach.
In Intelligent Vehicles Symposium, 2004 IEEE, pages
808–812. IEEE.
Tang, S. and Goto, S. (2010). Histogram of template for hu-
man detection. In Acoustics Speech and Signal Pro-
cessing (ICASSP), 2010 IEEE International Confer-
ence on, pages 2186–2189. IEEE.
Vapnik, V. N. and Vapnik, V. (1998). Statistical learning
theory, volume 1. Wiley New York.
Viola, P. and Jones, M. (2001). Rapid object detection using
a boosted cascade of simple features. In Computer Vi-
sion and Pattern Recognition, 2001. CVPR 2001. Pro-
ceedings of the 2001 IEEE Computer Society Confer-
ence on, volume 1, pages I–I. IEEE.
Viola, P. and Jones, M. J. (2004). Robust real-time face
detection. International journal of computer vision,
57(2):137–154.
Viola, P., Jones, M. J., and Snow, D. (2003). Detecting
pedestrians using patterns of motion and appearance.
In null, page 734. IEEE.
Wu, B. and Nevatia, R. (2005). Detection of multiple, par-
tially occluded humans in a single image by bayesian
combination of edgelet part detectors. In Computer
Vision, 2005. ICCV 2005. Tenth IEEE International
Conference on, volume 1, pages 90–97. IEEE.
Xavier, J., Pacheco, M., Castro, D., Ruano, A., and Nunes,
U. (2005). Fast line, arc/circle and leg detection from
laser scan data in a player driver. In Robotics and Au-
tomation, 2005. ICRA 2005. Proceedings of the 2005
IEEE International Conference on, pages 3930–3935.
IEEE.
Yang, T., Fu, D., and Pan, S. (2016). Pedestrian tracking
for infrared image sequence based on trajectory man-
ifold of spatio-temporal slice. Multimedia Tools and
Applications, pages 1–15.
Zhang, G., Gao, F., Liu, C., Liu, W., and Yuan, H. (2010).
A pedestrian detection method based on svm classi-
fier and optimized histograms of oriented gradients
feature. In Natural Computation (ICNC), 2010 Sixth
International Conference on, volume 6, pages 3257–
3260. IEEE.
Zhang, J., Li, F.-W., Nie, W.-Z., Li, W.-H., and Su, Y.-T.
(2016). Visual attribute detction for pedestrian detec-
tion. Multimedia Tools and Applications, pages 1–18.
Zhang, Q. and Pless, R. (2004). Extrinsic calibration
of a camera and laser range finder (improves cam-
era calibration). In Intelligent Robots and Systems,
2004.(IROS 2004). Proceedings. 2004 IEEE/RSJ In-
ternational Conference on, volume 3, pages 2301–
2306. IEEE.
Zhu, C. and Peng, Y. (2017). Discriminative latent semantic
feature learning for pedestrian detection. Neurocom-
puting, 238:126–138.
Zhu, Q., Yeh, M.-C., Cheng, K.-T., and Avidan, S. (2006).
Fast human detection using a cascade of histograms
of oriented gradients. In Computer Vision and Pat-
tern Recognition, 2006 IEEE Computer Society Con-
ference on, volume 2, pages 1491–1498. IEEE.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
334