simple features. In Proceedings of the IEEE Con-
ference on Computer Vision and Pattern Recognition,
pages 1000–1008.
Ciurea, F. and Funt, B. (2003). A large image database
for color constancy research. In Color and Imaging
Conference, volume 2003, pages 160–164. Society for
Imaging Science and Technology.
Ebner, M. (2007). Color Constancy. The Wiley-IS&T Se-
ries in Imaging Science and Technology. Wiley.
Ester, M., Kriegel, H.-P., Sander, J., Xu, X., et al. (1996).
A density-based algorithm for discovering clusters in
large spatial databases with noise. In Kdd, volume 96,
pages 226–231.
Finlayson, G. D. (2013). Corrected-moment illuminant es-
timation. In Proceedings of the IEEE International
Conference on Computer Vision, pages 1904–1911.
Finlayson, G. D., Hordley, S. D., and Morovic, P. (2005).
Colour constancy using the chromagenic constraint.
In Computer Vision and Pattern Recognition, 2005.
CVPR 2005. IEEE Computer Society Conference on,
volume 1, pages 1079–1086. IEEE.
Finlayson, G. D., Hordley, S. D., and Tastl, I. (2006). Gamut
constrained illuminant estimation. International Jour-
nal of Computer Vision, 67(1):93–109.
Finlayson, G. D. and Trezzi, E. (2004). Shades of gray and
colour constancy. In Color and Imaging Conference,
volume 2004, pages 37–41. Society for Imaging Sci-
ence and Technology.
Finlayson, G. D. and Zakizadeh, R. (2014). Reproduction
angular error: An improved performance metric for
illuminant estimation. perception, 310(1):1–26.
Fredembach, C. and Finlayson, G. (2008). Bright chroma-
genic algorithm for illuminant estimation. Journal of
Imaging Science and Technology, 52(4):40906–1.
Funt, B. and Shi, L. (2010). The rehabilitation of MaxRGB.
In Color and Imaging Conference, volume 2010,
pages 256–259. Society for Imaging Science and
Technology.
Gao, S., Han, W., Yang, K., Li, C., and Li, Y. (2014). Ef-
ficient color constancy with local surface reflectance
statistics. In European Conference on Computer Vi-
sion, pages 158–173. Springer.
Gao, S.-B., Zhang, M., Li, C.-Y., and Li, Y.-J. (2016). Im-
proving Color Constancy by Discounting the Varia-
tion of Camera Spectral Sensitivity. arXiv preprint
arXiv:1609.01670.
Gehler, P. V., Rother, C., Blake, A., Minka, T., and Sharp, T.
(2008). Bayesian color constancy revisited. In Com-
puter Vision and Pattern Recognition, 2008. CVPR
2008. IEEE Conference on, pages 1–8. IEEE.
Gijsenij, A. and Gevers, T. (2007). Color Constancy using
Natural Image Statistics. In CVPR, pages 1–8.
Gijsenij, A. and Gevers, T. (2011). Color constancy using
natural image statistics and scene semantics. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 33(4):687–698.
Gijsenij, A., Gevers, T., and Lucassen, M. P. (2009). Per-
ceptual analysis of distance measures for color con-
stancy algorithms. JOSA A, 26(10):2243–2256.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2010). Gen-
eralized gamut mapping using image derivative struc-
tures for color constancy. International Journal of
Computer Vision, 86(2):127–139.
Gijsenij, A., Gevers, T., and Van De Weijer, J. (2011).
Computational color constancy: Survey and exper-
iments. Image Processing, IEEE Transactions on,
20(9):2475–2489.
Hordley, S. D. and Finlayson, G. D. (2004). Re-evaluating
colour constancy algorithms. In Pattern Recognition,
2004. ICPR 2004. Proceedings of the 17th Interna-
tional Conference on, volume 1, pages 76–79. IEEE.
Hu, Y., Wang, B., and Lin, S. (2017). Fully Convolutional
Color Constancy with Confidence-weighted Pooling.
In Computer Vision and Pattern Recognition, 2017.
CVPR 2017. IEEE Conference on, pages 4085–4094.
IEEE.
Japkowicz, N. and Shah, M. (2011). Evaluating learning
algorithms: a classification perspective. Cambridge
University Press.
Joze, H. R. V. and Drew, M. S. (2012). Exemplar-Based
Colour Constancy. In British Machine Vision Confer-
ence, pages 1–12.
Kim, S. J., Lin, H. T., Lu, Z., S
¨
usstrunk, S., Lin, S., and
Brown, M. S. (2012). A new in-camera imaging
model for color computer vision and its application.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 34(12):2289–2302.
L. Shi, B. F. (2015). Re-processed Version of the Gehler
Color Constancy Dataset of 568 Images.
Land, E. H. (1977). The retinex theory of color vision. Sci-
entific America.
Lynch, S. E., Drew, M. S., and Finlayson, k. G. D. (2013).
Colour Constancy from Both Sides of the Shadow
Edge. In Color and Photometry in Computer Vision
Workshop at the International Conference on Com-
puter Vision. IEEE.
Mazin, B., Delon, J., and Gousseau, Y. (2015). Estima-
tion of illuminants from projections on the planck-
ian locus. IEEE Transactions on Image Processing,
24(6):1944–1955.
Schanda, J. (2007). Colorimetry: Understanding the CIE
System. John Wiley & Sons.
Shi, W., Loy, C. C., and Tang, X. (2016). Deep Specialized
Network for Illuminant Estimation. In European Con-
ference on Computer Vision, pages 371–387. Springer.
Van De Weijer, J., Gevers, T., and Gijsenij, A. (2007a).
Edge-based color constancy. Image Processing, IEEE
Transactions on, 16(9):2207–2214.
Van De Weijer, J., Schmid, C., and Verbeek, J. (2007b). Us-
ing high-level visual information for color constancy.
In Computer Vision, 2007. ICCV 2007. IEEE 11th In-
ternational Conference on, pages 1–8. IEEE.
Vassilvitskii, S. (2007). K-means: Algorithms, Analyses,
Experiments. Stanford University.
Zakizadeh, R., Brown, M. S., and Finlayson, G. D. (2015).
A Hybrid Strategy For Illuminant Estimation Target-
ing Hard Images. In Proceedings of the IEEE Inter-
national Conference on Computer Vision Workshops,
pages 16–23.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
188