ACKNOWLEDEMENTS
This work was supported in part by the National Insti-
tutes of Health (NIH/NIAID 1UO1 AI-24290-01) and
by the Hugh Roy and Lillie Cranz Cullen Endowment
Fund. All statements of facts, opinion or conclusions
contained herein are those of the authors and should
not be construed as representing official views or poli-
cies of the sponsors.
REFERENCES
Arteta, C., Lempitsky, V., Noble, A., and Zisserman,
A. (2016). Detecting overlapping instances in mi-
croscopy images using extremal region trees. Medical
Image Analysis, 27:3–16.
Arteta, C., Lempitsky, V., Noble, J. A., and Zisserman, A.
(2012). Learning to detect cells using non-overlapping
extremal regions. In Proc. Medical Image Computing
and Computer Assisted Intervention, pages 348–356,
Berlin, Heidelberg.
Browet, A., Vleeschouwer, C. D., Jacques, L., Mathiah, N.,
Saykali, B., and Migeotte, I. (2016). Cell segmenta-
tion with random ferns and graph-cuts. In Proc. IEEE
International Conference on Image Processing, pages
4145–4149, Phonix, AZ.
Easley, G. R., Labate, D., and Colonna, F. (2009). Shearlet-
based total variation diffusion for denoising. IEEE
Transactions on Image Processing, 18(2):260–268.
Endres, B. T., Bassres, E., Memariani, A., Chang, L., Alam,
M. J., Vickers, R. J., Kakadiaris, I. A., and Garey,
K. W. (2016). A novel method for imaging the phar-
macological effects of antibiotic treatment on clostrid-
ium difficile. Anaerobe, 40:10–14.
Frangi, A., Niessen, W., Vincken, K., and Viergever, M.
(1998). Multiscale vessel enhancement filtering. In
Proc. Medical Image Computing and Computer As-
sisted Intervention, volume 1496, pages 130–137,
Cambridge, MA.
Kainz, P., Urschler, M., Schulter, S., Wohlhart, P., and
Lepetit, V. (2015). You should use regression to de-
tect cells. In Proc. Medical Image Computing and
Computer-Assisted Intervention, pages 276–283, Mu-
nich, Germany. Springer.
Keuper, M., Schmidt, T., Rodriguez-Franco, M., Schamel,
W., Brox, T., Burkhardt, H., and Ronneberger, O.
(2011). Hierarchical markov random fields for mast
cell segmentation in electron microscopic recordings.
In Proc. IEEE International Symposium on Biomedi-
cal Imaging: From Nano to Macro, pages 973–978,
Chicago, IL.
King, E., Reisenhofer, R., Kiefer, J., Lim, W., Li, Z., and
Heygster, G. (2015). Shearlet-based edge detection:
flame fronts and tidal flats. In Proc. SPIE Applications
of Digital Image Processing, volume 9599, pages 1–
11, San Diego, CA.
Matas, J., Chum, O., Urban, M., and Pajdla, T. (2004).
Robust wide-baseline stereo from maximally stable
extremal regions. Image and Vision Computing,
22(10):761–767.
Memariani, A., Nikou, C., Endres, B. T., Bass
`
eres, E.,
Garey, K. W., and Kakadiaris, I. A. (2016). DeTEC:
detection of touching elongated cells in sem images.
In Proc. International Symposium on Visual Comput-
ing, pages 288–297, Las Vegas, NV.
Minaee, S., Fotouhi, M., and Khalaj, B. (2014). A geomet-
ric approach to fully automatic chromosome segmen-
tation. In Proc. IEEE Signal Processing in Medicine
and Biology Symposium, pages 1–6, Philadelphia, PA.
Mori, G. (2005). Guiding model search using segmenta-
tion. In IEEE International Conference on Computer
Vision, pages 1417–1423.
Saiyod, S. and Wayalun, P. (2014). A hybrid technique
for overlapped chromosome segmentation of g-band
mataspread images automatic. In Proc. International
Conference on Digital Information and Communica-
tion Technology and its Applications, pages 400–404,
Bangkok, Thailand.
Santamaria-Pang, A., Rittscher, J., Gerdes, M., and Pad-
field, D. (2015). Cell segmentation and classification
by hierarchical supervised shape ranking. In Proc.
IEEE International Symposium on Biomedical Imag-
ing, pages 1296–1299, Brooklyn, NY.
Van Valen, D. A., Kudo, T., Lane, K. M., Macklin, D. N.,
Quach, N. T., DeFelice, M. M., Maayan, I., Tanouchi,
Y., Ashley, E. A., and Covert, M. W. (2016). Deep
learning automates the quantitative analysis of indi-
vidual cells in live-cell imaging experiments. PLoS
Computational Biology, 12(11):e1005177.
Wayalun, P., Chomphuwiset, P., Laopracha, N., and Wan-
chanthuek, P. (2012). Images enhancement of g-band
chromosome using histogram equalization, OTSU
thresholding, morphological dilation and flood fill
techniques. In Proc. 8
th
International Conference on
Computing and Networking Technology, pages 163–
168, Gueongju, China.
Wu, B. and Nevatia, R. (2009). Detection and segmentation
of multiple, partially occluded objects by grouping,
merging, assigning part detection responses. Interna-
tional Journal of Computer Vision, 82:185–204.
Zhang, C., Yarkony, J., and Hamprecht, F. A. (2014). Cell
detection and segmentation using correlation clus-
tering. In Proc. Medical Image Computing and
Computer-Assisted Intervention, pages 9–16, Boston.
Springer.
Zosso, D., Tran, G., and Osher, S. (2013). A unifying
retinex model based on non-local differential opera-
tors. In Proc. SPIE Computational Imaging, volume
8657, pages 865702–865702–16, Burlingame, CA.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
580