Darken, R. P. and Peterson, B. (2014). Spatial orientation,
wayfinding, and representation.
Duncan, D., Newman, B., Saslow, A., Wanserski, E., Ard,
T., Essex, R., and Toga, A. (2017). VRAIN: VR as-
sisted intervention for neuroimaging. In IEEE VR,
pages 467–468.
Gibson, J. (1950). The perception of the visual world.
Boston. Houghton-Mifflin.
Gogel, W. (1977). Stability and constancy in visual percep-
tion: Mechanisms and processes, chapter The metric
of visual space, pages 129–182. Wiley, New York.
Huang, H., Lin, N.-C., Barrett, L., Springer, D., Wang, H.-
C., Pomplun, M., and Yu, L.-F. (2016). Analyzing
visual attention via VE. In ACM SIGGRAPH ASIA,
pages 8:1–8:2.
Kelly, J., Donaldson, L., Sjolund, L., and Freiberg, J.
(2013). More than just perception–action recalibra-
tion: Walking through a VE causes rescaling of per-
ceived space. Attn., Perc., & Psych., 75:1473–1485.
Kersten, T., B
¨
uy
¨
uksalih, G., Tschirschwitz, F., Kan, T.,
Deggim, S., Kaya, Y., and Baskaraca, A. (2017). The
selimiye mosque of edirne, turkey-an immersive and
interactive VR experience using HTC vive. Intern. Ar.
of the Photo., Rem. Sens. & Spat. Info. Sci., 42.
Kitson, A., Hashemian, A. M., Stepanova, E. R., Kruijff,
E., and Riecke, B. E. (2017). Lean into it: Explor-
ing leaning-based motion cueing interfaces for virtual
reality movement. In IEEE VR, pages 215–216.
Kitson, A., Sproll, D., and Riecke, B. E. (2016). Influence
of ethnicity, gender and answering mode on a virtual
point-to-origin task. Front. in Behav. Neuro., 10.
Kuhl, S. A., Creem-Regehr, S. H., and Thompson, W. B.
(2008). Recalibration of rotational locomotion in im-
mersive virtual environments. ACM TAP, 5(3):17.
Lathrop, W. B. and Kaiser, M. K. (2002). Perceived orienta-
tion in physical and VEs: Changes in perceived orien-
tation as a function of idiothetic information available.
Pres., 11(1):19–32.
Leyrer, M., Linkenauger, S., B
¨
ulthoff, H., Kloos, U., and
Mohler, B. (2011). The influence of eye height and
avatars on egocentric distance estimates in immersive
virtual environments. In ACM APGV, pages 67–74.
Leyrer, M., Linkenauger, S., B
¨
ulthoff, H., and Mohler, B.
(2015). Eye height manipulations: A possible solution
to reduce underestimation of egocentric distances in
head-mounted displays. ACM TAP, 12(1):1.
Li, B., Nordman, A., Walker, J., and Kuhl, S. A. (2016). The
effects of artificially reduced field of view and periph-
eral frame stimulation on distance judgments in hmds.
SAP ’16, pages 53–56.
Loomis, J. M. and Knapp, J. M. (2003). Virtual and
Adaptive Environments, chapter Visual perception of
egocentric distance in real and virtual environments,
pages 21–46. ErlBaum, Mahwah, NJ.
Mark, L. (1987). Eyeheight-scaled information about affor-
dances. a study of sitting and stair climbing. J. Exp.
Psych: Hum. Perc. Perf., 13:361–370.
Masters, M. S. and Sanders, B. (1993). Is the gender dif-
ference in mental rotation disappearing? Behavior
genetics, 23(4):337–341.
Miloff, A., Lindner, P., Hamilton, W., Reuterski
¨
old, L., An-
dersson, G., and Carlbring, P. (2016). Single-session
gamified VR exposure therapy for spider phobia vs.
traditional exposure therapy. Trials, 17(1):60.
Murias, K., Kwok, K., Castillejo, A. G., Liu, I., and Iaria, G.
(2016). The effects of video game use on performance
in a virtual navigation task. Comp. in Hum. Behav.,
58:398–406.
Nori, R., Piccardi, L., Migliori, M., Guidazzoli, A., Frasca,
F., De Luca, D., and Giusberti, F. (2015). The VR
walking corsi test. Comp. in Hum. Behav., 48:72–77.
Nybakke, A., Ramakrishnan, R., and Interrante, V. (2012).
From virtual to actual mobility: Assessing the benefits
of active locomotion through an immersive VE using
a motorized wheelchair. In IEEE 3DUI, pages 27–30.
Pallavicini, F., Ferrari, A., Zini, A., Garcea, G., Zanacchi,
A., Barone, G., and Mantovani, F. (2017). What dis-
tinguishes a traditional gaming experience from one
in VR? an exploratory study. In Inter. Conf. on App.
Hum. Fact. and Ergo., pages 225–231.
Riecke, B. E., Bodenheimer, B., McNamara, T. P.,
Williams, B., Peng, P., and Feuereissen, D. (2010). Do
we need to walk for effective VR navigation? physi-
cal rotations alone may suffice. In 7th Inter. Conf. on
Spat. Cogn., pages 234–247.
Rock, I. (1975). An introduction to perception. MacMillan.
Ruddle, R. and Lessels, S. (2006). For efficient navigational
search, humans require full physical movement, but
not a rich visual scene. Psych. Sci., 17(6):460–465.
Ruddle, R., Payne, S., and Jones, D. (1999). Navi-
gating large-scale VEs: What differences occur be-
tween helmet-mounted and desk-top displays? Pres.,
8(2):157–168.
Suma, E., Babu, S., and Hodges, L. (2007). Comparison of
travel techniques in complex, mulit-level 3d environ-
ment. In IEEE 3DUI, pages 149–155.
Suma, E., Bruder, G., Steinicke, F., Krum, D., and Bolas, M.
(2012). A taxonomy for deploying redirection tech-
niques in immersive VE. In IEEE VR, pages 43–46.
Waller, D. and Greenauer, N. (2007). The role of body-
based sensory information in the acquisition of endur-
ing spatial representations. Psych. Res., 71:322–332.
Waller, D. and Hodgson, E. (2013). Sensory contributions
to spatial knowledge of real and virtual environments.
In Human Walking in VEs, pages 3–26. Springer.
Waller, D., Hunt, E., and Knapp, D. (1998). The transfer
of spatial knowledge in VE training. Pres., 7(2):129–
143.
Waller, D., Loomis, J. M., and Steck, S. D. (2003). Inertial
cues do not enhance knowledge of environmental lay-
out. Psychonomic bulletin & review, 10(4):987–993.
Warren, W. H. (1984). Perceiving affordances: Visual guid-
ance of stair climbing. J. Exp. Psych: Hum. Perc.
Perf., 10:683–703.
Willemsen, P. and Gooch, A. A. (2002). Perceived ego-
centric distances in real, image-based and traditional
virtual environments. In IEEE VR, pages 79–86.
Williams, B., Narasimham, G., McNamara, T. P., Carr,
T. H., Rieser, J. J., and Bodenheimer, B. (2006). Up-
Virtual Exploration: Seated versus Standing
271