and Simple Horizontal Coordinate Assignment, pages
31–44. Springer Berlin Heidelberg, Berlin, Heidel-
berg.
Chimani, M., Junger, M., and Schulz, M. (2008). Crossing
minimization meets simultaneous drawing. In 2008
IEEE Pacific Visualization Symposium, pages 33–40.
Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein,
C. (2009). Introduction to Algorithms, Third Edition.
The MIT Press, 3rd edition.
Diestel, R. (2005). Graph Theory. Springer.
Dorogovtsev, S. N. and Mendes, J. F. F. (2003). Evolution
of Networks, From Biological Nets to the Internet and
WWW. Oxford University Press.
Dul
´
ıkov
´
a, V. (2016). The Reign of King Nyuserre and Its
Impact on the Development of the Egyptian state. A
Multiplier Effect Period during the Old Kingdom. PhD
thesis, Charles University in Prague, Faculty of Arts,
Czech Institute of Egyptology.
Dwyer, T. (2009). Scalable, versatile and simple con-
strained graph layout. Computer Graphics Forum,
28(3):991–998.
Dwyer, T. and Koren, Y. (2005). Dig-cola: directed graph
layout through constrained energy minimization. In
IEEE Symposium on Information Visualization, 2005.
INFOVIS 2005., pages 65–72.
Eades, P. (1984). A heuristic for graph drawing. Congressus
Numerantium, 42:149–160.
Fruchterman, T. M. J. and Reingold, E. M. (1991). Graph
drawing by force-directed placement. Software: Prac-
tice and Experience, 21(11):1129–1164.
Gansner, E. R., Koutsofios, E., North, S. C., and Vo,
K. P. (1993). A technique for drawing directed
graphs. IEEE Transactions nn Software Engineering,
19(3):214–230.
Gansner, E. R. and North, S. C. (2000). An open graph
visualization system and its applications to software
engineering. Softw. Pract. Exper., 30(11):1203–1233.
GoogleFFT (2017). Google: Famous family trees.
https://groups.google.com/forum/\#\!forum/
famous-family-trees.
Gramps (2016). Gramps. genealogical research soft-
ware. https://gramps-project.org/. Accessed:
5.6.2016.
Gu, Y. and Sun, J. (2010). A tree-like complex network
model. Physica A: Statistical Mechanics and its Ap-
plications, 389(1):171 – 178.
Healy, P. and Nikolov, N. S. (2013). Handbook of
Graph Drawing and Visualization, chapter Hierarchi-
cal Drawing Algorithms, pages 409–453. CRC Press.
Hopcroft, J. and Tarjan, R. (1974). Efficient planarity test-
ing. Journal of the ACM, 21(4):549–568.
ITIS (2017). ITIS - Integrated Taxonomic Informa-
tion System. https://www.itis.gov/downloads/
index.html. Retrieved February, 10, 2017, from
the Integrated Taxonomic Information System on-line
database, http://www.itis.gov.
Kieffer, S., Dwyer, T., Marriott, K., and Wybrow, M.
(2016). Hola: Human-like orthogonal network lay-
out. IEEE Transactions on Visualization and Com-
puter Graphics, 22(1):349–358.
Lee, B., Parr, C. S., Plaisant, C., Bederson, B. B., Vek-
sler, V. D., Gray, W. D., and Kotfila, C. (2006).
Treeplus: Interactive exploration of networks with en-
hanced tree layouts. IEEE Transactions on Visualiza-
tion and Computer Graphics, 12(6):1414–1426.
Lempel, A., Even, S., and Cederbaum, I. (1967). An algo-
rithm for planarity testing of graphs. In Rosenstiehl,
P., Gordon, and Breach, editors, Theory of Graphs,
pages 215–232, New York.
Leskovec, J. and Krevl, A. (2017). SNAP Datasets: Stan-
ford large network dataset collection. http://snap.
stanford.edu/data.
Marik, R. (2017). Complex Networks & Their Applica-
tions V: Proceedings of the 5th International Work-
shop on Complex Networks and their Applications
(COMPLEX NETWORKS 2016), chapter Efficient
Genealogical Graph Layout, pages 567–578. Springer
International Publishing, Cham.
MGP (2017). Mathematics genealogy project, depart-
ment of mathematics, north dakota state univer-
sity. https://www.genealogy.math.ndsu.nodak.
edu/index.php. Accessed: February 2017.
MyHeritage (2016). Myheritage. https://www.
myheritage.cz. Accessed: 5.6.2016.
Pruitt, P. D. (2017). Great sites for links to genealogy soft-
ware. http://famousfamilytrees.blogspot.cz/
2011/12/. Accessed: February 2017.
Resende, M. G. C. and Ribeiro, C. C. (2001). Encyclopedia
of Optimization, chapter Graph planarization, pages
908–913. Springer US, Boston, MA.
Robinson, O., Dylus, D., and Dessimoz, C. (2016).
Phylo.io: Interactive viewing and comparison of large
phylogenetic trees on the web. Molecular Biology and
Evolution.
Shih, W.-K. and Hsu, W.-L. (1999). A new planarity test.
Theoretical Computer Science, 223(1-2):179–191.
Stobie, T. (2017). Thomas stobie’s genealogy pages.
http://freepages.genealogy.rootsweb.
ancestry.com/
˜
stobie/. Accessed: February
2017.
Sugiyama, K., Tagawa, S., and Toda, M. (1981). Methods
for visual understanding of hierarchical system struc-
tures. IEEE Transactions on Systems, Man, and Cy-
bernetics, 11(2):109–125.
Tutte, W. T. (1963). How to draw a graph. Proceed-
ings of the London Mathematical Society, Third Se-
ries, 3(13):743–768.
Tuttle, C., Nonato, L. G., and Silva, C. (2010). Pedvis: A
structured, space-efficient technique for pedigree vi-
sualization. IEEE Transactions on Visualization and
Computer Graphics, 16(6):1063–1072.
Warfield, J. N. (1977). Crossing theory and hierarchy map-
ping. IEEE Transactions on Systems, Man, and Cy-
bernetics, 7(7):505–523.
IVAPP 2018 - International Conference on Information Visualization Theory and Applications
308