Using a Hierarchical Graphical Model, pages 328–
344. Springer International Publishing, Cham.
Demirkus, M., Precup, D., Clark, J. J., and Arbel, T. (2015).
Hierarchical temporal graphical model for head pose
estimation and subsequent attribute classification in
real-world videos. Computer Vision and Image Un-
derstanding, 136:128 – 145. Generative Models in
Computer Vision and Medical Imaging.
Demirkus, M., Precup, D., Clark, J. J., and Arbel, T. (2016).
Hierarchical spatio-temporal probabilistic graphical
model with multiple feature fusion for binary facial at-
tribute classification in real-world face videos. IEEE
Transactions on Pattern Analysis & Machine Intelli-
gence, 38(6):1185–1203.
Eidinger, E., Enbar, R., and Hassner, T. (2014). Age and
gender estimation of unfiltered faces. Trans. Info. For.
Sec., 9(12):2170–2179.
Felzenszwalb, P. F., Girshick, R. B., McAllester, D., and
Ramanan, D. (2010). Object detection with discrimi-
natively trained part-based models. IEEE Trans. Pat-
tern Anal. Mach. Intell., 32(9):1627–1645.
Guan, J., Zhang, W., Gu, J. J., and Ren, H. (2015). No-
reference blur assessment based on edge modeling.
J. Visual Communication and Image Representation,
29:1–7.
He, K., Zhang, X., Ren, S., and Sun, J. (2015). Deep
residual learning for image recognition. CoRR,
abs/1512.03385.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in neural information process-
ing systems, pages 1097–1105.
Levi, G. and Hassner, T. (2015). Age and gender classifi-
cation using convolutional neural networks. In IEEE
Conf. on Computer Vision and Pattern Recognition
(CVPR) workshops.
Liu, Z., Luo, P., Wang, X., and Tang, X. (2015). Deep learn-
ing face attributes in the wild. In Proceedings of In-
ternational Conference on Computer Vision (ICCV).
Mansanet, J., Albiol, A., and Paredes, R. (2016). Local
deep neural networks for gender recognition. Pattern
Recogn. Lett., 70(C):80–86.
Mathias, M., Benenson, R., Pedersoli, M., and Van Gool, L.
(2014). Face detection without bells and whistles. In
ECCV.
Ng, C. B., Tay, Y. H., and Goi, B.-M. (2012). Vision-
based human gender recognition: A survey. CoRR,
abs/1204.1611.
Parkhi, O. M., Vedaldi, A., and Zisserman, A. (2015). Deep
face recognition. In British Machine Vision Confer-
ence.
Rahman, S., Rahman, M. M., Abdullah-Al-Wadud, M., Al-
Quaderi, G. D., and Shoyaib, M. (2016). An adaptive
gamma correction for image enhancement. EURASIP
Journal on Image and Video Processing, 2016(1):35.
Ranjan, R., Patel, V. M., and Chellappa, R. (2016). Hyper-
face: A deep multi-task learning framework for face
detection, landmark localization, pose estimation, and
gender recognition. CoRR, abs/1603.01249.
Rothe, R., Timofte, R., and Gool, L. V. (2015). Dex: Deep
expectation of apparent age from a single image. In
IEEE International Conference on Computer Vision
Workshops (ICCVW).
Rothe, R., Timofte, R., and Gool, L. V. (2016). Deep ex-
pectation of real and apparent age from a single im-
age without facial landmarks. International Journal
of Computer Vision (IJCV).
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh,
S., Ma, S., Huang, Z., Karpathy, A., Khosla, A.,
Bernstein, M., Berg, A. C., and Fei-Fei, L. (2015).
ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision (IJCV),
115(3):211–252.
Simonyan, K. and Zisserman, A. (2014). Very deep con-
volutional networks for large-scale image recognition.
CoRR, abs/1409.1556.
Viola, P. and Jones, M. (2001). Rapid object detection us-
ing a boosted cascade of simple features. In Proceed-
ings of the 2001 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition. CVPR
2001, pages 511–518.
Wang, W. C., Hsu, R. Y., Huang, C. R., and Syu, L. Y.
(2015). Video gender recognition using temporal co-
herent face descriptor. In 2015 IEEE/ACIS 16th Inter-
national Conference on Software Engineering, Artifi-
cial Intelligence, Networking and Parallel/Distributed
Computing (SNPD), pages 1–6.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
358