REFERENCES
Alam, J., M.Fink, and Pupyrev, S. (2016). The bun-
dled crossing number. In 24th Internat. Symp. Graph
Drawing, pages 399–412.
Angelini, P., Bekos, M., Kaufmann, M., Kindermann, P.,
and Schneck, T. (2016). 1-fan-bundle-planar drawings
of graphs. In 24th Internat. Symp. Graph Drawing –
Poster, pages 634–636.
B
¨
ack, T. (1996). Evolutionary Algorithms in Theory and
Practice: Evolution Strategies, Evolutionary Pro-
gramming, Genetic Algorithms. Oxford Univ. Press.
Battista, G., Eades, P., Tamassia, R., and Tollis, I. G. (1998).
Graph Drawing: Algorithms for the Visualization of
Graphs. Prentice Hall PTRr, 1st edition.
Bruckdorfer, T., Cornelsen, S., Gutwenger, C., Kaufmann,
M., Montecchiani, F., N
¨
ollenburg, M., and Wolff, A.
(2012). Progress on partial edge drawings. CoRR,
abs/1209.0830.
Cui, W., Zhou, H., Qu, H., Wong, P., and Li, X. (2008).
Geometry-based edge clustering for graph visualiza-
tion. Trans. Vis. Comput. Graph, 14(6):1277–1284.
Ersoy, O., Hurter, C., Paulovich, F., Cantareiro, G., and
Telea, A. (2011). Skeleton-based edge bundling
for graph visualization. Trans. Vis. Comput. Graph,
12(17):2364–2373.
Ferreira, J. M., Nascimento, H. A. D., Quigley, A. J.,
and Foulds, L. R. (2017). Computational complex-
ity of edge bundling problemss. http://inf.ufg.
br/biblioteca-digital. Technical report, Federal
University of Goi
´
as.
Girvan, M. and Newman, M. (2002). Community struc-
ture in social and biological networks. Natl. Acad.
Sci. USA, 99(12):7821–7826.
Holten, D. (2006). Hierarchical edge bundles: Visualization
of adjacency relations in hierarchical data. Trans. Vis.
Comput. Graph, 12(5):741–748.
Holten, D. and van Wijk, J. (2009). Force-directed edge
bundling for graph visualization. Comput. Graph. Fo-
rum, 28(3):983–990.
Hurter, C., Ersoy, O., and Telea, A. (2012). Graph bundling
by kernel density estimation. Comput. Graph. Forum,
31(3):865–874.
ISGCI (2015). Information system on graph classes and
their inclusions. http://www.csun.edu/gd2015/
topics.htm. [Online; accessed 02-November-2017].
Knuth, D. (1993). The Stanford GraphBase: A Platform for
Combinatorial Computing. Addison-Wesley.
Lhuillier, A., Hurter, C., and Telea, A. (2017). State of the
art in edge and trail bundling techniques. Comput.
Graph. Forum, 36(3):619–645.
McKnight, R. L. (2015). Low-stretch trees for network vi-
sualization. Master dissertation, University of British
Columbia.
MovieLens (2017). Movielens. http://www.eecs.wsu.
edu/
˜
yyao/. [Online; accessed 02-November-2017].
Newman, M. E. J. (2006). Modularity and community
structure in networks. National Academy of Sciences,
103(23):8577–8582.
Nguyen, Q. H., Hong, S., and Eades, P. (2011). Tgi-eb: A
new framework for edge bundling integrating topol-
ogy, geometry and importance. 19th Internat. Symp.
Graph Drawing, 7034:123–135.
Nocaj, A. and Brandes, U. (2013). Stub bundling and con-
fluent spirals for geographic networks. In 21st Inter-
nat. Symp. Graph Drawing, pages 388–399.
Optimization, G. (2017). Gurobi optimizer quick start
guide. http://www.gurobi.com/documentation/.
[Online; accessed 14-May-2017].
Peng, D., N. Lu, W. C., and Peng, Q. (2012). Sideknot:
Revealing relation patterns for graph visualization. In
IEEE Pacific Visualization Symposium, pages 65–72.
Pupyrev, S., Nachmanson, L., and Kaufmann, M. (2011).
Improving layered graph layouts with edge bundling.
In Internat. Symp. Graph Drawing, pages 329–340.
Saga, R. (2016). Quantitative evaluation for edge bundling
by difference of edge lengths and area occupation. In
HCI International Posters Extended Abstracts, pages
287–290.
Saroj, D. (2012). A non-revisiting genetic algorithm for op-
timizing numeric multi-dimensional functions. Intern.
Journal on Comput. Sciences and Applic., 2(1):83–93.
Selassie, D., Heller, B., and Heer, J. (2011). Divided edge
bundling for directional network data. Trans. Vis.
Comput. Graph, 17(12):2354–2363.
Skiena, S. (1990). Minimum Vertex Cover. § 5.6.2 in Imple-
menting Discrete Mathematics: Combinatorics and
Graph Theory with Mathematica. Addison-Wesley.
Zachary, W. (1977). An information flow model for conflict
and fission in small groups. Journal of Anthropologi-
cal Research, 33(4):452–473.
An Evolutionary Algorithm for an Optimization Model of Edge Bundling
143