REFERENCES
Ahn, B., Park, J., and Kweon, I. S. (2014). Real-time head
orientation from a monocular camera using deep neu-
ral network. In Asian Conference on Computer Vision
(ACCV), pages 82–96. Springer.
An, K. H. and Chung, M. J. (2008). 3d head tracking and
pose-robust 2d texture map-based face recognition us-
ing a simple ellipsoid model. In IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems
(IROS), pages 307–312. IEEE.
Asteriadis, S., Karpouzis, K., and Kollias, S. (2010). Head
pose estimation with one camera, in uncalibrated en-
vironments. In Workshop on Eye Gaze in Intelligent
Human Machine Interaction, pages 55–62. ACM.
Baker, S., , Matthews, I., Xiao, J., Gross, R., Kanade, T.,
and Ishikawa, T. (2004). Real-time non-rigid driver
head tracking for driver mental state estimation. In
11th World Congress on Intelligent Transportation
Systems.
Baltru
ˇ
saitis, T., Robinson, P., and Morency, L.-P. (2012). 3d
constrained local model for rigid and non-rigid facial
tracking. In International Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE.
Borghi, G., Venturelli, M., Vezzani, R., and Cucchiara, R.
(2017). Poseidon: Face-from-depth for driver pose
estimation. In International Conference on Computer
Vision and Pattern Recognition (CVPR). IEEE.
Bouguet, J. Y. (2001). Pyramidal implementation of the
affine lucas kanade feature tracker description of the
algorithm. Intel Corporation, 5:1–10.
Cheng, S. Y., Park, S., and Trivedi, M. M. (2007). Multi-
spectral and multi-perspective video arrays for driver
body tracking and activity analysis. Computer Vision
and Image Understanding, 106(2):245–257.
Choi, S. and Kim, D. (2008). Robust head tracking using
3d ellipsoidal head model in particle filter. Pattern
Recognition, 41(9):2901–2915.
Diaz Barros, J. M., Garcia, F., Mirbach, B., and Stricker, D.
(2017). Real-time monocular 6-dof head pose estima-
tion from salient 2d points. In International Confer-
ence on Image Processing (ICIP). IEEE.
Dodgson, N. A. (2004). Variation and extrema of human
interpupillary distance. In Stereoscopic Displays and
Virtual Reality Systems XI, volume 5291, pages 36–
46. SPIE.
Drouard, V., Ba, S., Evangelidis, G., Deleforge, A., and
Horaud, R. (2015). Head pose estimation via proba-
bilistic high-dimensional regression. In International
Conference on Image Processing (ICIP), pages 4624–
4628. IEEE.
Fanelli, G., Dantone, M., Gall, J., Fossati, A., and Van Gool,
L. (2013). Random forests for real time 3d face
analysis. International Journal of Computer Vision,
101(3):437–458.
Fanelli, G., Gall, J., and Van Gool, L. (2011). Real time
head pose estimation with random regression forests.
In International Conference on Computer Vision and
Pattern Recognition (CVPR), pages 617–624. IEEE.
Ghiass, R. S., Arandjelovi
´
c, O., and Laurendeau, D. (2015).
Highly accurate and fully automatic head pose estima-
tion from a low quality consumer-level rgb-d sensor.
In 2nd Workshop on Computational Models of Social
Interactions: Human-Computer-Media Communica-
tion, pages 25–34. ACM.
Gordon, C. C., Bradtmiller, B., Clauser, C. E., Churchill,
T., McConville, J. T., Tebbetts, I., and Walker, R. A.
(1989). Anthropometric survey of u.s. army person-
nel: Methods and summary statistics. In Technical re-
port 89-044. Natick MA: U.S. Army Natick Research,
Development and Engineering Center.
Guo, Z., Liu, H., Wang, Q., and Yang, J. (2006). A fast
algorithm face detection and head pose estimation for
driver assistant system. In 8th International Confer-
ence on Signal Processing, volume 3. IEEE.
Jang, J. S. and Kanade, T. (2008). Robust 3d head track-
ing by online feature registration. In 8th International
Conference on Automatic Face & Gesture Recognition
(FG’08). IEEE.
Jang, J. S. and Kanade, T. (2010). Robust 3d head track-
ing by view-based feature point registration. Techni-
cal report, People Image Analysis (PIA) Consortium,
Carnegie Mellon University.
Jeni, L. A., Cohn, J. F., and Kanade, T. (2017). Dense 3d
face alignment from 2d video for real-time use. Image
and Vision Computing, 58:13–24.
Kazemi, V. and Sullivan, J. (2014). One millisecond face
alignment with an ensemble of regression trees. In In-
ternational Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 1867–1874. IEEE.
Kumano, S., Otsuka, K., Yamato, J., Maeda, E., and Sato,
Y. (2009). Pose-invariant facial expression recogni-
tion using variable-intensity templates. International
Journal of Computer Vision, 83(2):178–194.
Kun, J., Bok-Suk, S., and Reinhard, K. (2013). Novel back-
projection method for monocular head pose estima-
tion. International Journal of Fuzzy Logic and Intelli-
gent Systems, 13(1):50–58.
La Cascia, M., Sclaroff, S., and Athitsos, V. (2000). Fast,
reliable head tracking under varying illumination: An
approach based on registration of texture-mapped 3d
models. Transactions on Pattern Analysis and Ma-
chine Intelligence, 22(4):322–336.
Liu, X., Liang, W., Wang, Y., Li, S., and Pei, M. (2016). 3d
head pose estimation with convolutional neural net-
work trained on synthetic images. In International
Conference on Image Processing (ICIP), pages 1289–
1293. IEEE.
Meyer, G. P., Gupta, S., Frosio, I., Reddy, D., and Kautz,
J. (2015). Robust model-based 3d head pose estima-
tion. In International Conference on Computer Vision
(ICCV), pages 3649–3657. IEEE.
Morency, L., Whitehill, J., and Movellan, J. (2008). Gen-
eralized adaptive view-based appearance model: In-
tegrated framework for monocular head pose esti-
mation. In 8th International Conference on Auto-
matic Face & Gesture Recognition (FG’08), pages 1–
8. IEEE.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
132