REFERENCES
Achanta, R., Shaji, A., Smith, K., Lucchi, A., Fua, P., and
S
¨
usstrunk, S. (2010). Slic superpixels. Technical re-
port.
Breiman, L. (2001). Random forests. Machine learning,
45(1):5–32.
Christ, P. F., Ettlinger, F., Gr
¨
un, F., Elshaera, M. E. A., Lip-
kova, J., Schlecht, S., Ahmaddy, F., Tatavarty, S., Bic-
kel, M., Bilic, P., et al. (2017). Automatic liver and
tumor segmentation of ct and mri volumes using cas-
caded fully convolutional neural networks. arXiv pre-
print arXiv:1702.05970.
Dai, J., He, K., and Sun, J. (2016). Instance-aware semantic
segmentation via multi-task network cascades. In Pro-
ceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, pages 3150–3158.
Havaei, M., Davy, A., Warde-Farley, D., Biard, A., Cour-
ville, A., Bengio, Y., Pal, C., Jodoin, P.-M., and
Larochelle, H. (2017). Brain tumor segmentation
with deep neural networks. Medical image analysis,
35:18–31.
Kim, H., Thiagarajan, J., Jayaraman, J., and Bremer, P.-
T. (2015). A randomized ensemble approach to in-
dustrial ct segmentation. In Proceedings of the IEEE
International Conference on Computer Vision, pages
1707–1715.
Kontschieder, P., Bulo, S. R., Bischof, H., and Pelillo, M.
(2011). Structured class-labels in random forests for
semantic image labelling. In Computer Vision (ICCV),
2011 IEEE International Conference on, pages 2190–
2197. IEEE.
Lee, S., Purushwalkam, S., Cogswell, M., Crandall, D., and
Batra, D. (2015). Why m heads are better than one:
Training a diverse ensemble of deep networks. arXiv
preprint arXiv:1511.06314.
Li, X., Wang, L., and Sung, E. (2004). Multilabel svm
active learning for image classification. In Image
Processing, 2004. ICIP’04. 2004 International Con-
ference on, volume 4, pages 2207–2210. IEEE.
Loic, L. F., Aditya, V. N., Javier, A.-V., Richard, L., and
Antonio, C. (2016). Segmentation of brain tumors via
cascades of lifted decision forests. In Proceedings of
BRATS Challenge-MICCAI.
Menze, B. H., Jakab, A., Bauer, S., Kalpathy-Cramer, J.,
Farahani, K., Kirby, J., Burren, Y., Porz, N., Slot-
boom, J., Wiest, R., et al. (2015). The multimodal
brain tumor image segmentation benchmark (brats).
IEEE transactions on medical imaging, 34(10):1993–
2024.
Panagiotakis, C., Grinias, I., and Tziritas, G. (2011). Na-
tural image segmentation based on tree equipartition,
bayesian flooding and region merging. IEEE Tran-
sactions on Image Processing, 20(8):2276–2287.
Prastawa, M., Bullitt, E., Ho, S., and Gerig, G. (2004). A
brain tumor segmentation framework based on outlier
detection. Medical image analysis, 8(3):275–283.
Qian, C., Wang, L., Gao, Y., Yousuf, A., Yang, X., Oto, A.,
and Shen, D. (2016). In vivo mri based prostate can-
cer localization with random forests and auto-context
model. Computerized Medical Imaging and Graphics,
52:44–57.
Rahman, A. and Tasnim, S. (2014). Ensemble classi-
fiers and their applications: A review. arXiv preprint
arXiv:1404.4088.
Valverde, S., Cabezas, M., Roura, E., Gonz
´
alez-Vill
`
a, S.,
Pareto, D., Vilanova, J.-C., Rami
´
o-Torrent
`
a, L., Ro-
vira,
`
A., Oliver, A., and Llad
´
o, X. (2017). Improving
automated multiple sclerosis lesion segmentation with
a cascaded 3d convolutional neural network approach.
arXiv preprint arXiv:1702.04869.
Wang, L., Pedersen, P., Agu, E., Strong, D., and Tulu, B.
(2016). Area determination of diabetic foot ulcer ima-
ges using a cascaded two-stage svm based classifica-
tion. IEEE Transactions on Biomedical Engineering.
Wei, Y., Xia, W., Huang, J., Ni, B., Dong, J., Zhao, Y., and
Yan, S. (2014). Cnn: Single-label to multi-label. arXiv
preprint arXiv:1406.5726.
Yang, S., Yuan, C., Wu, B., Hu, W., and Wang, F. (2015).
Multi-feature max-margin hierarchical bayesian mo-
del for action recognition. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recogni-
tion, pages 1610–1618.
Yijing, L., Haixiang, G., Xiao, L., Yanan, L., and Jin-
ling, L. (2016). Adapted ensemble classification algo-
rithm based on multiple classifier system and feature
selection for classifying multi-class imbalanced data.
Knowledge-Based Systems, 94:88–104.
Zhang, J., Gao, Y., Park, S. H., Zong, X., Lin, W., and Shen,
D. (2016a). Segmentation of perivascular spaces using
vascular features and structured random forest from
7t mr image. In International Workshop on Machine
Learning in Medical Imaging, pages 61–68. Springer.
Zhang, L. and Ji, Q. (2008). Integration of multiple contex-
tual information for image segmentation using a baye-
sian network. In Computer Vision and Pattern Recog-
nition Workshops, 2008. CVPRW’08. IEEE Computer
Society Conference on, pages 1–6. IEEE.
Zhang, L. and Ji, Q. (2011). A bayesian network model for
automatic and interactive image segmentation. IEEE
Transactions on Image Processing, 20(9):2582–2593.
Zhang, L., Wang, Q., Gao, Y., Li, H., Wu, G., and Shen,
D. (2016b). Concatenated spatially-localized random
forests for hippocampus labeling in adult and infant
mr brain images. Neurocomputing.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
426