Hajnal, J. V., Hill, D. L., and Hawkes, D. J., editors (2001).
Medical Image Registration. CRC Press, Boca Raton,
FL.
Howard, A. G. (2013). Some improvements on deep con-
volutional neural network based image classification.
arXiv:1312.5402.
Ikeda, K., Ino, F., and Hagihara, K. (2014). Efficient accel-
eration of mutual information computation for non-
rigid registration using CUDA. IEEE J. Biomedical
and Health Informatics, 18(3):956–968.
Ino, F., Ooyama, K., and Hagihara, K. (2005a). A data
distributed parallel algorithm for nonrigid image reg-
istration. Parallel Computing, 31(1):19–43.
Ino, F., Tanaka, Y., Kitaoka, H., and Hagihara, K. (2005b).
Performance study of nonrigid registration algorithm
for investigating lung disease on clusters. In Proc. 6th
Int’l Conf. Parallel and Distributed Computing, Appli-
cations and Technology (PDCAT’05), pages 820–825.
Ioffe, S. and Szegedy, C. (2015). Batch normalization: Ac-
celerating deep network training by reducing internal
covariate shift. arXiv:1502.03167.
Klein, A., Andersson, J., Ardekani, B. A., Ashburner,
J., Avants, B., Chiang, M.-C., Christensen, G. E.,
Collins, D. L., Gee, J., Hellier, P., Song, J. H., Jenk-
inson, M., Lepage, C., Rueckert, D., Thompson, P.,
Vercauteren, T., Woods, R. P., Mann, J. J., and Parsey,
R. V. (2009). Evaluation of 14 nonlinear deformation
algorithms applied to human brain MRI registration.
NeuroImage, 46(3):786–802.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012).
Imagenet classification with deep convolutional neu-
ral networks. In Proc. 26th Conf. Neural Information
Processing Systems (NIPS’12), pages 1097–1105.
Lee, S., Wolberg, G., and Shin, S. Y. (1997). Scattered data
interpolation with multilevel B-splines. IEEE Trans.
Visualization and Computer Graphics, 3(3):228–244.
NVIDIA Corporation (2017a). CUDA C Programming
Guide Version 8.0.
NVIDIA Corporation (2017b). cuDNN v5.1: GPU acceler-
ated deep learning.
Preferred Networks, inc. (2017). Chainer: A powerful, flex-
ible, and intuitive framework for neural networks.
Rohlfing, T. and Maurer, C. R. (2003). Nonrigid image reg-
istration in shared-memory multiprocessor environ-
ments with application to brains, breasts, and bees.
IEEE Trans. Information Technology in Biomedicine,
7(1):16–25.
Rueckert, D., Sonoda, L. I., Hayes, C., Hill, D. L. G., Leach,
M. O., and Hawkes, D. J. (1999). Nonrigid regis-
tration using free-form deformations: Application to
breast MR images. IEEE Trans. Medical Imaging,
18(8):712–721.
Shen, D. and Davatzikos, C. (2002). HAMMER: Hierar-
chical attribute matching mechanism for elastic regis-
tration. IEEE Trans. Medical Imaging, 21(11):1421–
1439.
Studholme, C., Hill, D. L. G., and Hawkes, D. J. (1999).
An overlap invariant entropy measure of 3D medical
image alignment. Pattern Recognition, 32(1):71–86.
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.,
Anguelov, D., Erhan, D., Vanhoucke, V., and Rabi-
novich, A. (2015). Going deeper with convolutions.
In Proc. 28th IEEE Conf. Computer Vision and Pat-
tern Recognition (CVPR’15), pages 1–9.
Vercauteren, T., Pennec, X., Perchant, A., and Ay-
ache, N. (2009). Diffeomorphic demons: Effi-
cient non-parametric image registration. NeuroImage,
45(1):S61–S72.
Wu, G., Kim, M., Wang, Q., Gao, Y., Liao, S., and
Shen, D. (2013). Unsupervised deep feature learning
for deformable registration of MR brain images. In
Proc. 16th Int’l Conf. Medical Image Computing and
Computer-Assisted Intervention (MICCAI’13), pages
649–656.
Wyman, B. T., Harvey, D. J., Crawford, K., Bernstein,
M. A., Carmichael, O., Cole, P. E., Crane, P. K., De-
Carli, C., Fox, N. C., Gunter, J. L., et al. (2013). Stan-
dardization of analysis sets for reporting results from
ADNI MRI data. Alzheimer’s & Dementia, 9(3):332–
337.