ing deep into convolutional nets. In British Machine
Vision Conference, BMVC 2014, Nottingham, UK.
Csurka, G., Dance, C., Fan, L., Willamowski, J., and Bray,
C. (2004). Visual categorization with bags of key-
points. In Workshop on statistical learning in com-
puter vision, ECCV. Volume 1., Prague.
Dana, K. J., van Ginneken, B., Nayar, S. K., and Koen-
derink, J. J. (1999). Reflectance and texture of real-
world surfaces. ACM Trans. Graph., 18(1):1–34.
Deng, J., Dong, W., Socher, R., Li, L., Li, K., and Li, F.
(2009). Imagenet: A large-scale hierarchical image
database. In 2009 IEEE Computer Society Conference
on Computer Vision and Pattern Recognition (CVPR
2009), pages 248–255, Miami, Florida, USA.
Enzweiler, M. and Gavrila, D. M. (2008). A mixed
generative-discriminative framework for pedestrian
classification. In 2008 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition
(CVPR 2008), Anchorage, Alaska, USA.
Hayman, E., Caputo, B., Fritz, M., and Eklundh, J. (2004).
On the significance of real-world conditions for mate-
rial classification. In Computer Vision - ECCV 2004,
8th European Conference on Computer Vision. Pro-
ceedings, Part IV., pages 253–266, Prague, Czech Re-
public.
Hu, D., Bo, L., and Ren, X. (2011). Toward robust mate-
rial recognition for everyday objects. In British Ma-
chine Vision Conference, BMVC 2011. Proceedings.,
Dundee, UK.
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J.,
Girshick, R., Guadarrama, S., and Darrell, T. (2014).
Caffe: Convolutional architecture for fast feature em-
bedding. In Proceedings of the 22Nd ACM Interna-
tional Conference on Multimedia. MM 14, pages 675–
678, New York, NY, USA.
Kalliatakis, G., Stamatiadis, G., Ehsan, S., Leonardis, A.,
Gall, J., Sticlaru, A., and McDonald-Maier, K. D.
(2017). Evaluating deep convolutional neural net-
works for material classification. In Proceedings of
the 12th International Conference on Computer Vision
Theory and Applications, VISAPP 2017, Portugal.
Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Im-
agenet classification with deep convolutional neural
networks. In Advances in Neural Information Pro-
cessing Systems 25: 26th Annual Conference on Neu-
ral Information Processing Systems 2012. Proceed-
ings of a meeting, pages 1106–1114, Lake Tahoe,
Nevada, United States.
Liu, C., Yang, G., and Gu, J. (2013). Learning discrimina-
tive illumination and filters for raw material classifica-
tion with optimal projections of bidirectional texture
functions. In 2013 IEEE Conference on Computer Vi-
sion and Pattern Recognition, pages 1430–1437, Port-
land, OR, USA.
Oxholm, G. and Nishino, K. (2012). Shape and reflectance
from natural illumination. In Computer Vision - ECCV
2012 - 12th European Conference on Computer Vi-
sion. Proceedings Part I., pages 528–541, Florence,
Italy.
Pishchulin, L., Jain, A., Wojek, C., Andriluka, M.,
Thormhlen, T., and Schiele, B. (2011). Learning peo-
ple detection models from few training samples. In
The 24th IEEE Conference on Computer Vision and
Pattern Recognition, CVPR 2011, pages 1473–1480,
Colorado Springs, CO, USA.
Sermanet, P., Eigen, D., Zhang, X., Mathieu, M., Fergus,
R., and LeCun, Y. (2013). Overfeat: Integrated recog-
nition, localization and detection using convolutional
networks. In CoRR abs/, page 1312.6229.
Sharan, L., Rosenholtz, R., and Adelson, E. (2010). Mate-
rial perception: What can you see in a brief glance?
Journal of Vision, 9(8):784–784a.
Shotton, J., Fitzgibbon, A. W., Cook, M., Sharp, T., Finoc-
chio, M., Moore, R., Kipman, A., and Blake, A.
(2011). Real-time human pose recognition in parts
from single depth images. In The 24th IEEE Con-
ference on Computer Vision and Pattern Recognition,
CVPR 2011, pages 1297–1304, Colorado Springs,
CO, USA.
Stark, M., Goesele, M., and Schiele, B. (2010). Back to
the future: Learning shape models from 3d cad data.
In British Machine Vision Conference, BMVC 2010.
Proceedings., pages 1–11, Aberystwyth, UK.
Targhi, A. T., Geusebroek, J., and Zisserman, A. (2008).
Texture classification with minimal training images.
In 19th International Conference on Pattern Recogni-
tion (ICPR 2008), pages 1–4, Tampa, Florida, USA.
Vazquez, D., Lopez, A. M., Marin, J., Geronimo, D., and
Ponsa, D. (2014). Virtual and real world adaptation for
pedestrian detection. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 36(4):797–809.
Weinmann, M., Gall, J., and Klein, R. (2014). Material
classification based on training data synthesized us-
ing a btf database. In Computer Vision - ECCV 2014
- 13th European Conference. Proceedings, Part III.,
pages 156–171, Zurich, Switzerland.
Zeiler, M. D. and Fergus, R. (2014). Visualizing and under-
standing convolutional networks. In Computer Vision
- ECCV 2014 - 13th European Conference. Proceed-
ings, Part I., pages 818–833, Zurich, Switzerland.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
432