Freeland, S. J. and Hurst, L. D. (1998). The genetic code is
one in a million. J Mol Evol, 47(3):238–248.
Freeland, S. J., Knight, R. D., Landweber, L. F., and Hurst,
L. D. (2000). Early fixation of an optimal genetic
code. Mol Biol Evol, 17(4):511–8.
Freeland, S. J., Wu, T., and Keulmann, N. (2003). The
case for an error minimizing standard genetic code.
Origins of Life and Evolution of the Biosphere, 33(4-
5):457–477.
Goodarzi, H., Najafabadi, H. S., Hassani, K., Nejad, H. A.,
and Torabi, N. (2005). On the optimality of the ge-
netic code, with the consideration of coevolution the-
ory by comparison of prominent cost measure matri-
ces. J Theor Biol, 235(3):318–25.
Haig, D. and Hurst, L. D. (1991). A quantitative measure
of error minimization in the genetic-code. J Mol Evol,
33(5):412–417.
Heaphy, S. M., Mariotti, M., Gladyshev, V. N., Atkins, J. F.,
and Baranov, P. V. (2016). Novel ciliate genetic code
variants including the reassignment of all three stop
codons to sense codons in Condylostoma magnum.
Mol Biol Evol, 33:2885–2889.
Jukes, T. H. (1996). Neutral changes and modifications
of the genetic code. Theoretical Population Biology,
49(2):143–145.
Koonin, E. V. (2017). Frozen accident pushing 50: Stere-
ochemistry, expansion, and chance in the evolution of
the genetic code. Life (Basel), 7(2).
Kurnaz, M. L., Bilgin, T., and Kurnaz, I. A. (2010). Certain
non-standard coding tables appear to be more robust
to error than the standard genetic code. J Mol Evol,
70(1):13–28.
Lim, P. O. and Sears, B. B. (1992). Evolutionary relation-
ships of a plant-pathogenic mycoplasmalike organism
and Acholeplasma laidlawii deduced from two riboso-
mal protein gene sequences. J. Bacteriol, 174:2606–
2611.
McCutcheon, J. P., McDonald, B. R., and Moran, N. A.
(2009). Origin of an alternative genetic code in the
extremely small and GC-rich genome of a bacterial
symbiont. Plos Genetics, 5(7).
Morgens, D. W. and Cavalcanti, A. R. (2013). An alterna-
tive look at code evolution: using non-canonical codes
to evaluate adaptive and historic models for the origin
of the genetic code. J Mol Evol, 76(1-2):71–80.
Osawa, S., Jukes, T. H., Watanabe, K., and Muto, A. (1992).
Recent evidence for evolution of the genetic code. Mi-
crobiol Rev, 56(1):229–64.
Osawa, S., Ohama, T., Jukes, T. H., and Watanabe, K.
(1989). Evolution of the mitochondrial genetic code.
I. origin of AGR serine and stop codons in metazoan
mitochondria. J Mol Evol, 29(3):202–7.
Sanchez-Silva, R., Villalobo, E., Morin, L., and Torres, A.
(2003). A new noncanonical nuclear genetic code:
translation of UAA into glutamate. Curr Biol, 13:442–
447.
Santos, J. and Monteagudo, A. (2010). Study of the genetic
code adaptability by means of a genetic algorithm. J
Theor Biol, 264(3):854–865.
Santos, M. A., Moura, G., Massey, S. E., and Tuite, M. F.
(2004). Driving change: the evolution of alternative
genetic codes. Trends Genet, 20(2):95–102.
Schneider, S. U., Leible, M. B., and Yang, X. P.
(1989). Strong homology between the small subunit
of ribulose-1,5-bisphosphate carboxylase/oxygenase
of two species of Acetabularia and the occurrence of
unusual codon usage. Mol Gen Genet, 218:445–452.
Sengupta, S., Yang, X., and Higgs, P. G. (2007). The mech-
anisms of codon reassignments in mitochondrial ge-
netic codes. J Mol Evol, 64(6):662–88.
Swire, J., Judson, O. P., and Burt, A. (2005). Mitochon-
drial genetic codes evolve to match amino acid re-
quirements of proteins. J Mol Evol, 60(1):128–39.
Woese, C. R. (1973). Evolution of the genetic code. Natur-
wissenschaften, 60(10):447–59.
Wong, J. T. (1975). A co-evolution theory of the genetic
code. Proc Natl Acad Sci U S A, 72(5):1909–12.
Wong, J. T., Ng, S. K., Mat, W. K., Hu, T., and Xue, H.
(2016). Coevolution theory of the genetic code at age
forty: Pathway to translation and synthetic life. Life
(Basel), 6(1).
Xie, J. M. and Schultz, P. G. (2006). Innovation: A chemical
toolkit for proteins - an expanded genetic code. Nat
Rev Mol Cell Biol, 7(10):775–782.
Zahonova, K., Kostygov, A. Y., Sevcikova, T., Yurchenko,
V., and Elias, M. (2016). An unprecedented non-
canonical nuclear genetic code with all three termi-
nation codons reassigned as sense codons. Curr Biol,
26:2364–2369.
The Importance of Changes Observed in the Alternative Genetic Codes
159