handle a wide variety of rendering effects.
Overfitting to noise is a major challenge. Our
future work will extend the supervised learning ap-
proaches such as neural network. In addition, we in-
tend to compute the optimal bandwidth using a con-
sistent metric instead of selecting from a predefined
candidate set.
REFERENCES
Bako, S., Vogels, T., Mcwilliams, B., Meyer, M., Nov
´
aK,
J., Harvill, A., Sen, P., Derose, T., and Rousselle,
F. (2017). Kernel-predicting convolutional networks
for denoising monte carlo renderings. ACM Trans.
Graph., 36(4):97:1–97:14.
Belcour, L., Soler, C., Subr, K., Holzschuch, N., and
Durand, F. (2013). 5D covariance tracing for effi-
cient defocus and motion blur. ACM Trans. Graph.,
32(3):31:1–31:18.
Bitterli, B., Rousselle, F., Moon, B., Iglesias-Guitin,
J. A., Adler, D., Mitchell, K., Jarosz, W., and
Novk, J. (2016). Nonlinearly weighted first-order
regression for denoising Monte Carlo renderings.
Computer Graphics Forum (Proceedings of EGSR),
35(4):107117.
Chaitanya, C. R. A., Kaplanyan, A. S., and Schied, C.
(2017). Interactive reconstruction of monte carlo im-
age sequences using a recurrent denoising autoen-
coder. ACM Trans. Graph., 36(4):98:1–98:12.
Delbracio, M., Mus
´
e, P., Buades, A., Chauvier, J., Phelps,
N., and Morel, J.-M. (2014). Boosting Monte Carlo
rendering by ray histogram fusion. ACM Trans.
Graph., 33(1):8:1–8:15.
Durand, F., Holzschuch, N., Soler, C., Chan, E., and Sillion,
F. X. (2005). A frequency analysis of light transport.
ACM Trans. Graph., 24(3):1115–1126.
Egan, K., Hecht, F., Durand, F., and Ramamoorthi, R.
(2011). Frequency analysis and sheared filtering for
shadow light fields of complex occluders. ACM Trans.
Graph., 30(2):9:1–9:13.
Egan, K., Tseng, Y.-T., Holzschuch, N., Durand, F.,
and Ramamoorthi, R. (2009). Frequency analysis
and sheared reconstruction for rendering motion blur.
ACM Transactions on Graphics (SIGGRAPH 09),
28(3).
Hachisuka, T., Jarosz, W., Weistroffer, R. P., Dale, K.,
Humphreys, G., Zwicker, M., and Jensen, H. W.
(2008). Multidimensional adaptive sampling and re-
construction for ray tracing. ACM Trans. Graph.,
27(3):33:1–33:10.
He, K., Sun, J., and Tang, X. (2010). Guided image filter-
ing. In Proceedings of the 11th European Conference
on Computer Vision: Part I, ECCV’10, pages 1–14,
Berlin, Heidelberg. Springer-Verlag.
Kajiya, J. T. (1986). The rendering equation. In In: Pro-
ceedings of the 13th Annual Conference on Computer
Graphics and Interactive Techniques, SIGGRAPH
’86, pages 143–150, New York, NY, USA. ACM.
Kalantari, N. K., Bako, S., and Sen, P. (2015). A machine
learning approach for filtering monte carlo noise.
ACM Trans. Graph., 34(4):122:1–122:12.
Kalantari, N. K. and Sen, P. (2013). Removing the
noise in monte carlo rendering with general image
denoising algorithms. Computer Graphics Forum,
32(2pt1):93102.
Lehtinen, J., Aila, T., Chen, J., Laine, S., and Durand,
F. (2011). Temporal light field reconstruction for
rendering distribution effects. ACM Trans. Graph.,
30(4):55:1–55:12.
Li, T.-M., Wu, Y.-T., and Chuang, Y.-Y. (2012). Sure-
based optimization for adaptive sampling and recon-
struction. ACM Trans. Graph., 31(6):194:1–194:9.
Liu, Y., Zheng, C., Zheng, Q., and Yuan, H. (2017). Re-
moving monte carlo noise using a sobel operator and
a guided image filter. The Visual Computer.
Moon, B., Carr, N., and Yoon, S.-E. (2014). Adaptive
rendering based on weighted local regression. ACM
Trans. Graph., 33(5):170:1–170:14.
Moon, B., Iglesias-Guitian, J. A., Yoon, S.-E., and Mitchell,
K. (2015). Adaptive rendering with linear predictions.
ACM Trans. Graph., 34(4):121:1–121:11.
Moon, B., Jun, J. Y., Lee, J., Kim, K., Hachisuka, T., and
Yoon, S. (2013). Robust image denoising using a vir-
tual flash image for Monte Carlo ray tracing. Comput.
Graph. Forum, 32(1):139–151.
Moon, B., McDonagh, S., Mitchell, K., and Gross, M.
(2016). Adaptive polynomial rendering. ACM Trans.
Graph., 35(4):40:1–40:10.
Pharr, M. and Humphreys, G. (2010). Physically Based
Rendering: From Theory to Implementation. Morgan
Kaufmann Publishers Inc., San Francisco.
Rousselle, F., Knaus, C., and Zwicker, M. (2011). Adaptive
sampling and reconstruction using greedy error mini-
mization. ACM Trans. Graph., 30(6):159:1–159:12.
Rousselle, F., Manzi, M., and Zwicker, M. (2013). Robust
Denoising using Feature and Color Information. Com-
puter Graphics Forum.
Sen, P. and Darabi, S. (2012). On filtering the noise from
the random parameters in monte carlo rendering. ACM
Trans. Graph., 31(3):18:1–18:15.
Soler, C., Subr, K., Durand, F., Holzschuch, N., and Sillion,
F. (2009). Fourier depth of field. ACM Trans. Graph.,
28(2):18:1–18:12.
Zwicker, M., Jarosz, W., Lehtinen, J., Moon, B., Ra-
mamoorthi, R., Rousselle, F., Sen, P., Soler, C., and
Yoon, S.-E. (2015). Recent advances in adaptive sam-
pling and reconstruction for Monte Carlo rendering.
Comput. Graph. Forum, 34(2):667–681.
GRAPP 2018 - International Conference on Computer Graphics Theory and Applications
294