Hou, Q., Wang, J., Bai, R., Zhou, S., and Gong, Y. (2017).
Face alignment recurrent network. Pattern Recogni-
tion.
Jin, X. and Tan, X. (2016). Face alignment in-the-wild: A
survey. arXiv preprint arXiv:1608.04188.
K
¨
ostinger, M., Wohlhart, P., Roth, P. M., and Bischof, H.
(2011). Annotated facial landmarks in the wild: A
large-scale, real-world database for facial landmark
localization. In ICCV Workshops, pages 2144–2151.
Kristan, M., Leonardis, A., Matas, J., Felsberg, M., Pflug-
felder, R.,
ˇ
Cehovin, L., Vojir, T., H
¨
ager, G., Luke
ˇ
zi
ˇ
c,
A., and Fernandez, G. (2016). The visual object
tracking vot2016 challenge results. In ECCV Works-
hops, pages 777–823, Cham.
Le, V., Brandt, J., Lin, Z., Bourdev, L., and Huang, T.
(2012). Interactive facial feature localization. ECCV,
pages 679–692.
Liu, H., Lu, J., Feng, J., and Zhou, J. (2017a). Lear-
ning deep sharable and structural detectors for face
alignment. IEEE Transactions on Image Processing,
26(4):1666–1678.
Liu, H., Lu, J., Feng, J., and Zhou, J. (2017b). Two-stream
transformer networks for video-based face alignment.
IEEE Transactions on Pattern Analysis and Machine
Intelligence.
Park, U. and Jain, A. K. (2010). Face matching and retrieval
using soft biometrics. IEEE Transactions on Informa-
tion Forensics and Security, 5(3):406–415.
Peng, X., Feris, R. S., Wang, X., and Metaxas, D. N. (2016).
A recurrent encoder-decoder network for sequential
face alignment. In ECCV, pages 38–56.
Rajamanoharan, G. and Cootes, T. F. (2015). Multi-view
constrained local models for large head angle facial
tracking. In ICCV Workshops, pages 18–25.
Ranjan, R., Patel, V. M., and Chellappa, R. (2016). Hyper-
face: A deep multi-task learning framework for face
detection, landmark localization, pose estimation, and
gender recognition. arXiv preprint arXiv:1603.01249.
Ren, S., Cao, X., Wei, Y., and Sun, J. (2014). Face align-
ment at 3,000 fps via regressing local binary features.
In CVPR, pages 1685–1692.
Sagonas, C., Antonakos, E., Tzimiropoulos, G., Zafeiriou,
S., and Pantic, M. (2016). 300 faces in-the-wild chal-
lenge: Database and results. Image and Vision Com-
puting, 47:3–18.
Sagonas, C., Tzimiropoulos, G., Zafeiriou, S., and Pantic,
M. (2013). A semi-automatic methodology for fa-
cial landmark annotation. In CVPR Workshops, pages
896–903.
S
´
anchez-Lozano, E., Martinez, B., Tzimiropoulos, G., and
Valstar, M. (2016). Cascaded continuous regression
for real-time incremental face tracking. In ECCV, pa-
ges 645–661.
Saragih, J. M., Lucey, S., and Cohn, J. F. (2011). Deforma-
ble model fitting by regularized landmark mean-shift.
International Journal of Computer Vision, 91(2):200–
215.
Shen, J., Zafeiriou, S., Chrysos, G. G., Kossaifi, J., Tzimi-
ropoulos, G., and Pantic, M. (2015). The first facial
landmark tracking in-the-wild challenge: Benchmark
and results. In ICCV Workshops, pages 1003–1011.
Simonyan, K. and Zisserman, A. (2014). Two-stream con-
volutional networks for action recognition in videos.
In NIPS, pages 568–576.
Sun, Y., Wang, X., and Tang, X. (2014). Deep learning
face representation from predicting 10,000 classes. In
CVPR, pages 1891–1898.
Uric
´
ar, M., Franc, V., and Hlav
´
ac, V. (2015). Facial land-
mark tracking by tree-based deformable part model
based detector. In ICCV Workshops, pages 10–17.
Wang, W., Tulyakov, S., and Sebe, N. (2016). Recurrent
convolutional face alignment. In ACCV, pages 104–
120.
Wu, Y. and Ji, Q. (2015). Shape augmented regression met-
hod for face alignment. In ICCV Workshops, pages
26–32.
Xiao, S., Feng, J., Xing, J., Lai, H., Yan, S., and Kassim, A.
(2016). Robust facial landmark detection via recurrent
attentive-refinement networks. In ECCV, pages 57–
72.
Xiao, S., Yan, S., and Kassim, A. A. (2015). Facial land-
mark detection via progressive initialization. In ICCV
Workshops, pages 33–40.
Xiong, X. and De la Torre, F. (2013). Supervised des-
cent method and its applications to face alignment. In
CVPR, pages 532–539.
Yang, H., He, X., Jia, X., and Patras, I. (2015a). Robust
face alignment under occlusion via regional predictive
power estimation. IEEE Transactions on Image Pro-
cessing, 24(8):2393–2403.
Yang, H., Jia, X., Loy, C. C., and Robinson, P. (2015b).
An empirical study of recent face alignment methods.
arXiv preprint arXiv:1511.05049.
Yang, J., Deng, J., Zhang, K., and Liu, Q. (2015c). Facial
shape tracking via spatio-temporal cascade shape re-
gression. In ICCV Workshops, pages 41–49.
Zafeiriou, S., Trigeorgis, G., Chrysos, G., Deng, J., and
Shen, J. (2017). The menpo facial landmark localisa-
tion challenge: A step towards the solution. In CVPR
Workshops.
Zafeiriou, S., Zhang, C., and Zhang, Z. (2015). A survey
on face detection in the wild: past, present and future.
Computer Vision and Image Understanding, 138:1–
24.
Zhang, J., Shan, S., Kan, M., and Chen, X. (2014). Coarse-
to-fine auto-encoder networks for real-time face alig-
nment. In ECCV, pages 1–16.
Zhang, Z., Luo, P., Loy, C. C., and Tang, X. (2016). Lear-
ning deep representation for face alignment with auxi-
liary attributes. IEEE Transactions on Pattern Analy-
sis and Machine Intelligence, 38(5):918–930.
Zhu, S., Li, C., Change Loy, C., and Tang, X. (2015).
Face alignment by coarse-to-fine shape searching. In
CVPR, pages 4998–5006.
Zhu, X., Lei, Z., Liu, X., Shi, H., and Li, S. Z. (2016).
Face alignment across large poses: A 3D solution. In
CVPR, pages 146–155.
Zhu, X. and Ramanan, D. (2012). Face detection, pose es-
timation, and landmark localization in the wild. In
CVPR, pages 2879–2886.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
438