Elad, M. and Aharon, M. (2006). Image denoising via
sparse and redundant representations over learned dic-
tionaries. IEEE Transactions on Image Processing,
15(12):3736–3745.
Facciolo, G., Arias, P., Caselles, V., and Sapiro, G. (2009).
Exemplar-based interpolation of sparsely sampled im-
ages. In Proceedings of the International Conference
on Energy Minimization Methods in Computer Vision
and Pattern Recognition, pages 331–344.
Fadili, M. J., Starck, J.-L., Bobin, J., and Moudden, Y.
(2010). Image decomposition and separation using
sparse representations: an overview. Proceedings of
the IEEE, 98(6):983–994.
Galea, S., Debattista, K., and Spina, S. (2014). GPU-based
selective sparse sampling for interactive high-fidelity
rendering. In Proceedings of the International Con-
ference on Games and Virtual Worlds for Serious Ap-
plications, pages 1–8.
Gortler, S. J., Grzeszczuk, R., Szeliski, R., and Cohen, M. F.
(1996). The lumigraph. In Proceedings of the An-
nual Conference on Computer Graphics and Interac-
tive Techniques, pages 43–54.
Herzog, R., Eisemann, E., Myszkowski, K., and Seidel, H.-
P. (2010). Spatio-temporal upsampling on the GPU.
In Proceedings of the ACM SIGGRAPH symposium
on Interactive 3D Graphics and Games, pages 91–98.
Jonscher, M., Seiler, J., and Kaup, A. (2016). Texture-
dependent frequency selective reconstruction of non-
regularly sampled images. In Proceedings of the Pic-
ture Coding Symposium, pages 1–5.
Kalantari, N. K., Bako, S., and Sen, P. (2015). A machine
learning approach for filtering Monte Carlo noise.
ACM Transactions on Graphics, 34(4):122–1.
Karis, B. (2014). Advances in real-time rendering in games.
SIGGRAPH Courses, 1.
Keller, A., Fascione, L., Fajardo, M., Georgiev, I., Chris-
tensen, P. H., Hanika, J., Eisenacher, C., and Nichols,
G. (2015). The path tracing revolution in the movie
industry. In SIGGRAPH Courses, pages 24–1.
Keller, A., Karras, T., Wald, I., Aila, T., Laine, S., Bikker, J.,
Gribble, C., Lee, W.-J., and McCombe, J. (2013). Ray
tracing is the future and ever will be... In SIGGRAPH
Courses.
Kim, Y., Seo, W., Kim, Y., Lim, Y., Nah, J.-H., and Ihm, I.
(2016). Adaptive undersampling for efficient mobile
ray tracing. The Visual Computer, 32(6-8):801–811.
Koloda, J., Seiler, J., and Kaup, A. (2015). Denoising-
based image reconstruction from pixels located at
non-integer positions. In Proceedings of the IEEE
International Conference on Image Processing, pages
4565–4569.
Koloda, J., Seiler, J., and Kaup, A. (2016). Reliability-based
mesh-to-grid image reconstruction. In Proceedings of
the IEEE International Workshop on Multimedia Sig-
nal Processing, pages 1–5.
Koloda, J., Seiler, J., and Kaup, A. (2017). Frequency se-
lective mesh-to-grid resampling for image communi-
cation. IEEE Transactions on Multimedia, 19:1689–
1701.
Koskela, M., Viitanen, T., J
¨
a
¨
askel
¨
ainen, P., and Takala, J.
(2016). Foveated path tracing. In Proceedings of the
International Symposium on Visual Computing, pages
723–732.
Lee, W.-J., Hwang, S. J., Shin, Y., Ryu, S., and Ihm, I.
(2016). Adaptive multi-rate ray sampling on mobile
ray tracing GPU. In SIGGRAPH ASIA 2016 Mobile
Graphics and Interactive Applications, page 3.
Longhurst, P., Debattista, K., and Chalmers, A. (2006). A
GPU based saliency map for high-fidelity selective
rendering. In Proceedings of the International Con-
ference on Computer Graphics, Virtual Reality, Visu-
alisation and Interaction in Africa, pages 21–29.
Mara, M., McGuire, M., Bitterli, B., and Jarosz, W. (2017).
An efficient denoising algorithm for global illumina-
tion. In Proceedings of High Performance Graphics,
page 3.
Marroquim, R., Kraus, M., and Cavalcanti, P. R. (2008). Ef-
ficient image reconstruction for point-based and line-
based rendering. Computers & Graphics, 32(2):189–
203.
Overbeck, R. S., Donner, C., and Ramamoorthi, R. (2009).
Adaptive wavelet rendering. ACM Transactions on
Graphics, 28(5):140–1.
Pintus, R., Gobbetti, E., and Agus, M. (2011). Real-time
rendering of massive unstructured raw point clouds
using screen-space operators. In Proceedings of the
International Symposium on Virtual Reality, Archae-
ology and Intelligent Cultural Heritage.
Schied, C., Kaplanyan, A., Wyman, C., Patney, A., Chai-
tanya, C. R. A., Burgess, J., Liu, S., Dachsbacher,
C., Lefohn, A., and Salvi, M. (2017). Spatiotempo-
ral variance-guided filtering: real-time reconstruction
for path-traced global illumination. In Proceedings of
High Performance Graphics, page 2.
Seiler, J., Jonscher, M., Sch
¨
oberl, M., and Kaup, A. (2015).
Resampling images to a regular grid from a non-
regular subset of pixel positions using frequency se-
lective reconstruction. IEEE Transactions on Image
Processing, 24(11):4540–4555.
Sen, P. and Darabi, S. (2011). Compressive rendering: A
rendering application of compressed sensing. IEEE
Transactions on Visualization and Computer Graph-
ics, 17(4):487–499.
Shevtsov, M., Letavin, M., and Rukhlinskiy, A. (2010). Low
cost adaptive anti-aliasing for real-time ray-tracing. In
Proceedings of the International Conference on Com-
puter Graphics and Vision, volume 10, pages 45–49.
Steinberger, M., Kainz, B., Hauswiesner, S., Khlebnikov,
R., Kalkofen, D., and Schmalstieg, D. (2012). Ray pri-
oritization using stylization and visual saliency. Com-
puters & Graphics, 36(6):673–684.
Stengel, M., Grogorick, S., Eisemann, M., and Magnor,
M. (2016). Adaptive image-space sampling for gaze-
contingent real-time rendering. In Computer Graphics
Forum, volume 35, pages 129–139.
Strohmer, T. (1997). Computationally attractive reconstruc-
tion of bandlimited images from irregular samples.
IEEE Transactions on Image Processing, 6(4):540–
548.
Sparse Sampling for Real-time Ray Tracing
301