it constitutes a first track to investigate the impact of
the morphology on the neuron function, the first for-
mal one.
As a direct continuation of this work, it would be
interesting to make more general proofs and possi-
bly with more complex and biologically relevant ex-
amples. The ultimate aim would be to automatically
find constraints on parameters, such as observed de-
lays provided by dendrites, for a model to satisfy a
given behaviour. In another research direction, we
think about building neuronal circuits. This would
probably bring insights on how the neuronal structure
could enable the emergence of complex behaviour at
a larger scale.
REFERENCES
Bianchi, S., Stimpson, C. D., Bauernfeind, A. L., Schapiro,
S. J., Baze, W. B., McArthur, M. J., Bronson, E.,
Hopkins, W. D., Semendeferi, K., Jacobs, B., et al.
(2012). Dendritic morphology of pyramidal neu-
rons in the chimpanzee neocortex: regional special-
izations and comparison to humans. Cerebral cortex,
23(10):2429–2436.
B
¨
orgers, C. (2017). Quadratic integrate-and-fire (qif) and
theta neurons. In An Introduction to Modeling Neu-
ronal Dynamics, pages 51–55. Springer.
Bower, J.M., B. D. (2003). The book of GENESIS: explor-
ing realistic neural models with the General Neural
Simulation System. Internet Edition.
Brette, R. (2003). Mod
`
eles impulsionnels de r
´
eseaux de
neurones biologiques. PhD thesis, Universit
´
e Pierre et
Marie Curie-Paris VI.
Brette, R. (2012). Computing with neural synchrony. PLoS
computational biology, 8(6):e1002561.
Brette, R. and Gerstner, W. (2005). Adaptive exponen-
tial integrate-and-fire model as an effective descrip-
tion of neuronal activity. Journal of neurophysiology,
94(5):3637–3642.
Brunel, N. and Van Rossum, M. C. (2007). Lapicques 1907
paper: from frogs to integrate-and-fire. Biological cy-
bernetics, 97(5-6):337–339.
Cook, E. P. and Johnston, D. (1997). Active dendrites re-
duce location-dependent variability of synaptic input
trains. Journal of neurophysiology, 78(4):2116–2128.
De Maria, E., Muzy, A., Gaff
´
e, D., Ressouche, A., and
Grammont, F. (2016). Verification of temporal prop-
erties of neuronal archetypes modeled as synchronous
reactive systems. In International Workshop on Hy-
brid Systems Biology, pages 97–112. Springer.
G
¨
okc¸e, O., Bonhoeffer, T., and Scheuss, V. (2016). Clusters
of synaptic inputs on dendrites of layer 5 pyramidal
cells in mouse visual cortex. eLife, 5:e09222.
Gorski, T., Veltz, R., Galtier, M., Fragnaud, H., Telenczuk,
B., and Destexhe, A. (2017). Inverse correlation pro-
cessing by neurons with active dendrites. bioRxiv.
Gr
¨
un, S., Diesmann, M., Grammont, F., Riehle, A., and
Aertsen, A. (1999). Detecting unitary events without
discretization of time. Journal of neuroscience meth-
ods, 94(1):67–79.
H
¨
ausser, M. and Mel, B. (2003). Dendrites: bug or feature?
Current opinion in neurobiology, 13(3):372–383.
H
¨
ausser, M., Spruston, N., and Stuart, G. J. (2000). Di-
versity and dynamics of dendritic signaling. Science,
290(5492):739–744.
Hodgkin, A. L. and Huxley, A. F. (1952). A quantitative
description of membrane current and its application to
conduction and excitation in nerve. The Journal of
physiology, 117(4):500–544.
Hu, H. and Vervaeke, K. (2017). Synaptic integration in
cortical inhibitory neuron dendrites. Neuroscience.
Izhikevich, E. M. (2006). Polychronization: computation
with spikes. Neural computation, 18(2):245–282.
Johnson, L. R. (2003). Essential medical physiology. Aca-
demic Press.
Johnston, D. and Narayanan, R. (2008). Active dendrites:
colorful wings of the mysterious butterflies. Trends in
neurosciences, 31(6):309–316.
Koch, C. (2004). Biophysics of computation: information
processing in single neurons. Oxford university press.
Lapicque, L. (1907). Recherches quatitatives sur
l’excitation electrique des nerfs traitee comme polari-
sation. J. Physiol. Pathol. Gen., 9:620–635.
Maass, W. (1996). Lower bounds for the computational
power of networks of spiking neurons. Neural com-
putation, 8(1):1–40.
Maass, W. (1999). Computing with spiking neurons. Pulsed
neural networks, 85.
Magee, J. C. and Cook, E. P. (2000). Somatic epsp am-
plitude is independent of synapse location in hip-
pocampal pyramidal neurons. Nature neuroscience,
3(9):895.
Manita, S., Miyakawa, H., Kitamura, K., and Murayama,
M. (2017). Dendritic spikes in sensory perception.
Frontiers in cellular neuroscience, 11.
McCulloch, W. S. and Pitts, W. (1943). A logical calculus
of the ideas immanent in nervous activity. The bulletin
of mathematical biophysics, 5(4):115–133.
Mel, B. W. (1994). Information processing in dendritic
trees. Neural computation, 6(6):1031–1085.
Mohan, H., Verhoog, M. B., Doreswamy, K. K., Eyal,
G., Aardse, R., Lodder, B. N., Goriounova, N. A.,
Asamoah, B., B. Brakspear, A. C., Groot, C., et al.
(2015). Dendritic and axonal architecture of individ-
ual pyramidal neurons across layers of adult human
neocortex. Cerebral Cortex, 25(12):4839–4853.
Paulus, W. and Rothwell, J. C. (2016). Membrane resis-
tance and shunting inhibition: where biophysics meets
state-dependent human neurophysiology. The Journal
of physiology, 594(10):2719–2728.
Popper, K. R. (1963). Conjectures and refutations: the
growth of scientific knowledge.
Rall, W. (1959). Branching dendritic trees and motoneu-
ron membrane resistivity. Experimental neurology,
1(5):491–527.
Computer-aided Formal Proofs about Dendritic Integration within a Neuron
59