Cao, S., Lu, W., and Xu, Q. (2015). GraRep: Learning
graph representations with global structural informa-
tion. In Proceedings of the 24th ACM International
on Conference on Information and Knowledge Mana-
gement, CIKM’15, pages 891–900.
Carreira-Perpi
˜
nan, M. A. (2010). The elastic embedding al-
gorithm for dimensionality reduction. In Proceedings
of the 27th International Conference on Machine Le-
arning, ICML’10, pages 167–174.
Chen, L. and Buja, A. (2009). Local multidimensional
scaling for nonlinear dimension reduction, graph dra-
wing, and proximity analysis. Journal of the American
Statistical Association, 104(485):209–219.
Chen, V., Paisley, J., and Lu, X. (2017). Revealing com-
mon disease mechanisms shared by tumors of diffe-
rent tissues of origin through semantic representation
of genomic alterations and topic modeling. BMC Ge-
nomics, 18(Suppl 2):105.
Cunningham, J. P. and Ghahramani, Z. (2015). Linear di-
mensionality reduction: Survey, insights, and gene-
ralizations. Journal of Machine Learning Research,
16:2859–2900.
Daudin, J. J., Picard, F., and Robin, S. (2008). A mixture
model for random graphs. Statistics and Computing,
18(2):173–183.
Davies, D. L. and Bouldin, D. W. (1979). A cluster separa-
tion measure. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 1(2):224–227.
Delauney, C., Baskiotis, N., and Guigue, V. (2016). Tra-
jectory bayesian indexing: The airport ground traffic
case. In IEEE 19th International Conference on In-
telligent Transportation Systems (ITSC), pages 1047–
1052.
Dikmen, O., Yang, Z., and Oja, E. (2015). Learning the in-
formation divergence. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 37(7):1442–1454.
Girolami, M. (2001). The topographic organization and vi-
sualization of binary data using multivariate-bernoulli
latent variable models. IEEE Transactions on Neural
Networks, 12(6):1367–1374.
Goldberger, J., Hinton, G. E., Roweis, S. T., and Salakhut-
dinov, R. R. (2005). Neighbourhood components ana-
lysis. In Advances in Neural Information Processing
Systems 17, pages 513–520. MIT Press.
Handcock, M. S., Raftery, A. E. and Tantrum, J. M. (2007).
Model-based clustering for social networks. JRSS-A,
170(2), 301–354.
Hashimoto, T. B., Alvarez-Melis, D., and Jaakkola, T. S.
(2016). Word embeddings as metric recovery in se-
mantic spaces. TACL, 4:273–286.
Hinton, G. E. and Roweis, S. T. (2003). Stochastic neig-
hbor embedding. In Advances in Neural Information
Processing Systems 15, pages 857–864. MIT Press.
Hoff, P. D., Raftery, A. E., and Handcock, M. S. (2002).
Latent space approaches to social network analysis.
Journal of the American Statistical Association, The-
ory and Methods, 97(460).
Iwata, T., Saito, K., Ueda, N., Stromsten, S., Griffiths,
T. L., and Tenenbaum, J. B. (2007). Parametric em-
bedding for class visualization. Neural Computation,
19(9):2536–2556.
Iwata, T., Yamada, T., and Ueda, N. (2008). Probabilis-
tic latent semantic visualization: topic model for vi-
sualizing documents. In Proceeding of the 14th ACM
SIGKDD international conference on Knowledge dis-
covery and data mining, KDD’08, pages 363–371.
Kim, M., Choi, M., Lee, S., Tang, J., Park, H., and Choo, J.
(2016). PixelSNE: Visualizing Fast with Just Enough
Precision via Pixel-Aligned Stochastic Neighbor Em-
bedding. ArXiv e-prints.
Kohonen, T. (1997). Self-organizing maps. Springer.
Kruiger, J. F., Rauber, P. E., Martins, R. M., Kerren, A.,
Kobourov, S., and Telea, A. C. (2017). Graph Layouts
by t-SNE. Comput. Graph. Forum (Proc. of EuroVis),
36(3):283–294.
Lebart, L., Salem, A., and Berry, L. (1998). Exploring Tex-
tual Data. Springer.
Lee, J. A., Peluffo-Ordonez, D. H., and Verleysen, M.
(2015). Multi-scale similarities in stochastic neig-
hbour embedding: Reducing dimensionality while
preserving both local and global structure. Neurocom-
puting, 169:246–261.
Lee, J. A., Renard, E., Bernard, G., Dupont, P., and Verley-
sen, M. (2013). Type 1 and 2 mixtures of Kullback-
Leibler divergences as cost functions in dimensiona-
lity reduction based on similarity preservation. Neu-
rocomputing, 112:92–108.
Lee, J. A. and Verleysen, M. (2007). Nonlinear Dimensio-
nality Reduction. Springer, 1st edition.
Lu, Y., Yang, Z., and Corander, J. (2016). Doubly Stochas-
tic Neighbor Embedding on Spheres. ArXiv e-prints.
Lunga, D. and Ersoy, O. (2013). Spherical stochastic
neighbor embedding of hyperspectral data. IEEE
Transactions on Geoscience and Remote Sensing,
51(2):857–871.
Mahfouz, A., van de Giessen, M., van der Maaten, L., Huis-
man, S., Reinders, M., Hawrylycz, M. J., and Lelie-
veldt, B. P. (2015). Visualizing the spatial gene ex-
pression organization in the brain through non-linear
similarity embeddings. Methods, 73:79–89.
Mariadassou, M., Robin, S., and Vacher, C. (2010). Unco-
vering latent structure in valued graphs: A variational
approach. Ann. Appl. Stat., 4(2):715–742.
Matias, C. and Robin, S. (2014). Modeling heterogeneity
in random graphs through latent space models: a se-
lective review. ESAIM: Proceedings, 47:55–74.
Nam, K., Je, H., and Choi, S. (2004). Fast stochastic neig-
hbor embedding: a trust-region algorithm. In IEEE In-
ternational Joint Conference on Neural Networks (IJ-
CNN), volume 1, page 123–128.
Narayan, K., Punjani, A., and Abbeel, P. (2015). Alpha-
beta divergences discover micro and macro structures
in data. In Proceedings of the 32nd International Con-
ference on Machine Learning, ICML’15, pages 796–
804.
Parviainen, E. (2016). A graph-based N-body approxima-
tion with application to stochastic neighbor embed-
ding. Neural Networks, 75:1–11.
IVAPP 2018 - International Conference on Information Visualization Theory and Applications
362