16(3):635–650.
Di Battista, G., Eades, P., Tamassia, R., and Tollis, I. G.
(1999). Graph Drawing: Algorithms for the Visual-
ization of Graphs. Prentice-Hall, Upper Saddle River,
NJ, USA.
Di Battista, G., Garg, A., Liotta, G., Tamassia, R., Tassi-
nari, E., and Vargiu, F. (1997). An experimental com-
parison of four graph drawing algorithms. Comput.
Geom., 7:303–325.
F
¨
oßmeier, U., Heß, C., and Kaufmann, M. (1998). On im-
proving orthogonal drawings: The 4m-algorithm. In
Whitesides, S., editor, Graph Drawing, 6th Interna-
tional Symposium, GD’98, Proceedings, volume 1547
of LNCS, pages 125–137. Springer.
F
¨
oßmeier, U. and Kaufmann, M. (1995). Drawing high
degree graphs with low bend numbers. In Bran-
denburg, F., editor, Graph Drawing, Symposium on
Graph Drawing, GD ’95, Proceedings, volume 1027
of LNCS, pages 254–266. Springer.
Holzhauser, M., Krumke, S. O., and Thielen, C. (2016).
Budget-constrained minimum cost flows. J. Comb.
Optim., 31(4):1720–1745.
J
¨
unger, M., Klau, G. W., Mutzel, P., and Weiskircher, R.
(2004). AGD - A library of algorithms for graph draw-
ing. In Graph Drawing Software, pages 149–172.
J
¨
unger, M., Mutzel, P., and Spisla, C. (2017). Orthog-
onal compaction using additional bends. CoRR,
abs/1706.06514.
Kaufmann, M. and Wagner, D., editors (2001). Drawing
Graphs, Methods and Models, volume 2025 of LNCS.
Springer.
Klau, G. W. (2002). A combinatorial approach to orthog-
onal placement problems. PhD thesis, Saarland Uni-
versity, Saarbr
¨
ucken, Germany.
Klau, G. W., Klein, K., and Mutzel, P. (2001). An exper-
imental comparison of orthogonal compaction algo-
rithms. In Marks, J., editor, Graph Drawing, 8th Inter-
national Symposium, GD 2000, Proceedings, volume
1984 of LNCS, pages 37–51. Springer.
Klau, G. W. and Mutzel, P. (1999). Optimal compaction of
orthogonal grid drawings. In Cornu
´
ejols, G., Burkard,
R. E., and Woeginger, G. J., editors, Integer Program-
ming and Combinatorial Optimization, 7th Interna-
tional IPCO Conference, 1999, Proceedings, volume
1610 of LNCS, pages 304–319. Springer.
Lengauer, T. (1990). Combinatorial Algorithms for Inte-
grated Circuit Layout. John Wiley & Sons, Inc., New
York, NY, USA.
Patrignani, M. (1999). On the complexity of orthogonal
compaction. In Algorithms and Data Structures, 6th
International Workshop, WADS ’99, Proceedings, vol-
ume 1663 of LNCS, pages 56–61. Springer.
Six, J. M., Kakoulis, K. G., and Tollis, I. G. (1998). Refine-
ment of orthogonal graph drawings. In Whitesides, S.,
editor, Graph Drawing, 6th International Symposium,
GD’98, Proceedings, volume 1547 of LNCS, pages
302–315. Springer.
Sp
¨
onemann, M., Fuhrmann, H., von Hanxleden, R., and
Mutzel, P. (2010). Port constraints in hierarchical
layout of data flow diagrams. In Eppstein, D. and
Gansner, E. R., editors, Graph Drawing, 17th Interna-
tional Symposium, GD 2009. Revised Papers, volume
5849 of LNCS, pages 135–146. Springer.
Tamassia, R. (1987). On embedding a graph in the grid
with the minimum number of bends. SIAM J. Com-
put., 16(3):421–444.
Tamassia, R., editor (2013). Handbook on Graph Drawing
and Visualization. Chapman and Hall/CRC.
Orthogonal Compaction using Additional Bends
155