Figure 6: 10 random retrieval results from MCD database.
5 CONCLUSIONS
This paper presents a general a ffine motion estimation
algorithm based on Affine Curve Matching Algorithm
(ACMA). The re -parameterization of the contours ba-
sed on the affine arc length is indispensable when the
movement is assum ed affines. Under this hypothe-
sis, we recover the affine param e te rs by the compu-
tation of the pseudo-inverse matrix which minimizes
the error. Our experimen ts indicate that our algorithm
works well on the MCD database compared to many
existing techniques, particularly in the case of partial
occlusions th at might arise in many situations. While
the results on this dataset are interesting, but there is
no guarantee that th e same ordering of the methods
would be obtained with other datasets or other met-
hods. So, in the future, we intend to compare our
method with other approaches and other datasets in
terms of both performance s under perspective distor-
tion and complexity.
REFERENCES
Adamek, T. and O’Connor, N. E. (2004). A multiscale re-
presentation method for nonrigid shapes with a single
closed contour. IEEE Transactions on Circuits and
Systems for Video Technology, 14(5):742–753.
Alajlan, N., Kamel, M. S., and Freeman, G. H. (2008).
Geometry-based image retrieval in binary image da-
tabases. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 30(6):1003–1013.
Arbter, K., Snyder, W. E., Burkhardt, H., and Hirzinger,
G. (1990). Application of affine-invariant fourier des-
criptors to recognition of 3-d objects. IEEE Tran-
sactions on pattern analysis and machine intelligence,
12(7):640–647.
Baseski, E., Erdem, A., and Tari, S. (2009). Dissimilarity
between two skeletal trees i n a context. Pattern Re-
cognition, 42(3):370–385.
Belongie, S., Malik, J., and Puzicha, J. (2002). Shape ma-
tching and object recognition using shape contexts.
IEEE transactions on pattern analysis and machine
intelligence, 24(4):509–522.
Bronstein, A. M., Bronstein, M. M., Bruckstein, A. M., and
Kimmel, R. (2008). Analysis of two-dimensional non-
rigid shapes. International Journal of Computer Vi-
sion, 78(1):67–88.
Bronstein, A. M., Bronstein, M. M., and Kimmel, R.
(2006). Generalized multidimensional scaling: a fra-
mework for isometry-invariant partial surface mat-
ching. Proceedings of the National Academy of Scien-
ces, 103(5):1168–1172.
Chaieb, F. and Ghorbel, F. (2008). Complete and stable
projective harmonic invariants for planar contours re-
cognition. In VISAPP (2), pages 111–116.
Chaker, F., Bannour, M. T., and Ghorbel, F. (2007). Con-
tour retrieval and matching by affine invariant fourier
descriptors. MVA, 7:291–294.
Chaker, F., Ghorbel, F., and Bannour, M. T. (2008).
Content-based shape retrieval using different affine
shape descriptors. In VISAPP (1), pages 497–500.
Daliri, M. R. and Torre, V. (2008). Robust symbolic repre-
sentation for shape recognition and retrieval. Pattern
recognition, 41(5):1782–1798.
Demirci, M. F. (2010). Efficient shape retrieval under par-
tial matching. In Pattern Recognition (ICPR), 2010
20th International Conference on, pages 3057–3060.
IEEE.
El Rube, I., Ahmed, M., and Kamel, M. (2006). Wavelet
approximation-based affine invariant shape represen-
tation functions. IEEE transactions on pattern analy-
sis and machine intelligence, 28(2):323–327.
Forsyth, D., Mundy, J. L., Zisserman, A., Coelho, C., Hel-
ler, A., and Rothwell, C. (1991). Invariant descriptors
for 3 d object recognition and pose. IEEE Transacti-
ons on Pattern Analysis and Machine Intelligence,
13(10):971–991.
Fu, H., Tian, Z., Ran, M., and Fan, M. (2013). Novel
affine-invariant curve descriptor for curve matching
and occluded object r ecognition. IET Computer Vi-
sion, 7(4):279–292.
Ghorbel, F. (1998). Towards a unitary formulation for i nva-
riant image description: application to image coding.
Annals of telecommunications, 53(5):242–260.
Ghorbel, F. (2013). Invariants de formes et de mouvement:
onze cas du 1D au 4D et de l’euclidien aux projectifs.
ARTS-PI editions.
Gopalan, R., Turaga, P., and Chellappa, R. (2010).
Articulation-invariant representation of non-planar
shapes. Computer Vision–ECCV 2010, pages 286–
299.
Huang, X., Wang, B., and Zhang, L. (2005). A new scheme
for extraction of affine invariant descriptor and affine
motion estimation based on independent component
analysis. Pattern Recognition Letters, 26(9):1244–
1255.