ACKNOWLEDGEMENTS
The authors would like to thank A. Boccacci and O.
Sánchez-Cortés for making a valuable contribution
to this Project.
REFERENCES
Alves, R., Antunes, F., Salvador, A., 2006. Tools for
kinetic modeling of biochemical networks. Nat
Biotechnol. 24(6), 667–72.
Blaheta, R.A., Michaelis, M., Driever, P. H. Cinatl, J. Jr.,
2005. Envolving anticancer drug valproic acid:
Insights into the mechanism and clinical studies. Med
Res Reviews 25(4), 383-397.
Borggrefe, T., Lauth, M., Zwijsen, A., Huylebroeck, D.,
Oswald, F., Giaimo, B.D., 2016. The Notch
intracellular domain integrates signals from Wnt,
Hedgehog, TGFβ/BMP and hypoxia pathways.
Biochim Biophys Acta 1863(2), 303–13.
Brücher, B. L. D. M., Jamall, I.S., 2014. Cell-cell
communication in the tumor microenvironment,
carcinogenesis, and anticancer treatment. Cell Physiol
Biochem. 34, 213–43.
Cárdenas-García, M., González-Pérez, P.P., 2013.
Applying the tuple space-based approach to the
simulation of the caspases, an essential signalling
pathway. J Integr Bioinform. 10(1), 225–34.
Cárdenas-García, M., González-Pérez, P. P., Montagna,
S., Cortés Sánchez, O., Caballero, E. H., 2016.
Modeling Intercellular Communication as a Survival
Strategy of Cancer Cells: An In Silico Approach on a
Flexible Bioinformatics Framework. Bioinformatics
and Biology Insights 10, 5-18.
Ciocchetta, F., Duguid, A., Guerriero, M. L., 2009. A
compartmental model of the cAMP/PKA/MAPK
pathway in bio-PEPA. Proceedings Third Workshop
on Membrane Computing and Biologically Inspired
Process Calculi, MeCBIC 2009, Bologna, Italy,
http://dx.doi.org/10.4204/EPTCS.11.5.
Cowan, A. E., Moraru. I. I, Schaff, J. C., Slepchenko, B.
M., Loew, L. M., 2012. Spatial modeling of cell
signaling networks. Methods Cell Biol. 110, 195–221.
Gelernter, D., 1985. Generative communication in Linda.
ACM Transactions on Programming Languages and
Systems 7(1), 80–112.
Gillespie, D. T., 1977. Exact stochastic simulation of
coupled chemical reactions, The Journal of Physical
Chemistry 81(8), 2340-2361.
González-Pérez, P. P., Cárdenas, M., Camacho, D.,
Franyuti, A., Rosas, O., Lagúnez-Otero, J., 2003.
Cellulat: an agent-based intracellular signalling model.
Biosystems 68(2–3),171–85.
González-Pérez, P. P., Omicini, A., Sbaraglia, M., 2013.
A biochemically inspired coordination-based model
for simulating intracellular signalling pathway. J
Simul. 7(3), 216–26.
González-Pérez, P. P., Cárdenas-García, M., Montagna,
S., 2013. Understanding the PI3K/AKT anti-apoptotic
signalling pathway: a tuple space-based computational
framework for simulating the signal transduction. J
Comput Model. 3(2), 35–65.
Grunsven, V., Vlierberghe, V., 2014. The roles of
transforming growth factor-β, Wnt, Notch and hypoxia
on liver progenitor cells in primary liver tumours
(review). Int J Oncol. 44(4), 1015–22.
Hernández, A. R., Klein, A. M., Kischner, M. W., 2013.
Kinetic responses of b-catenin specify the sites of Wnt
control. Science (338), 1337-1340.
Hoops, S., Sahle, S., Gauges, R., et al., 2006. COPASI: a
complex pathway simulator. Bioinformatics 22(30),
67–74.
Kerr, R. A., Bartol, T. M., Kaminsky, B., et al., 2008. Fast
Monte Carlo simulation methods for biological
reaction-diffusion systems in solution and on surfaces.
SIAM J Sci Comput. 30(31), 26–49.
Lee, E., Salic, A., Kruger, R., Heinrich, R., Kirschner, M.
W., 2003. The roles of APC and Axin derived from
experimental and theoretical analysis of the Wnt
pathways. PLoS Biology 1(1), 116-132.
Lum, L., Chen, C., 2015. Chemical disruption of WNT-
dependent cell fate decision-making mechanisms in
cancer and regenerative medicine. Curr Med Chem.
22(35), 4091–103.
Shimizu, T., Nakagawa, K., 2015. Novel signal
transduction pathways: the molecular basis for
targeted cancer therapies in Hedgehog/Notch/Wnt
pathway. Nihon Rinsho. 73(8), 1342–8.
Swat, M., Thomas, G. L., Belmonte, J. M., Shirinifard, A.,
Hmeljak, D., Glazier, J.A., 2012. Multi-scale
modeling of tissues using CompuCell3D. Methods
Cell Biol. 110, 325–66.
An in Silico Approach for Understanding the Complex Intercellular Interaction Patterns in Cancer Cells
195