GA643924. Furthermore, we want to thank Alwi Hu-
sada for the fruitful discussions.
REFERENCES
Briggs, W. L., Henson, V. E., and McCormick, S. F. (2000).
A multigrid tutorial. SIAM.
Chen, L.-C., Papandreou, G., Kokkinos, I., Murphy, K., and
Yuille, A. L. (2016a). Deeplab: Semantic image seg-
mentation with deep convolutional nets, atrous con-
volution, and fully connected crfs. arXiv preprint
arXiv:1606.00915.
Chen, L.-C., Yang, Y., Wang, J., Xu, W., and Yuille, A. L.
(2016b). Attention to scale: Scale-aware semantic
image segmentation. In Computer Vision and Pattern
Recognition (CVPR), pages 3640–3649.
Cordts, M., Omran, M., Ramos, S., Rehfeld, T., Enzweiler,
M., Benenson, R., Franke, U., Roth, S., and Schiele,
B. (2016). The cityscapes dataset for semantic urban
scene understanding. In Computer Vision and Pattern
Recognition (CVPR).
Everingham, M., Eslami, S. M. A., Van Gool, L., Willi-
ams, C. K. I., Winn, J., and Zisserman, A. (2015).
The pascal visual object classes challenge: A retro-
spective. International Journal of Computer Vision
(IJCV), 111(1):98–136.
Farabet, C., Couprie, C., Najman, L., and LeCun, Y.
(2013). Learning hierarchical features for scene la-
beling. Pattern Analysis and Machine Intelligence
(PAMI), 35(8):1915–1929.
Grauman, K. and Darrell, T. (2005). The pyramid ma-
tch kernel: Discriminative classification with sets of
image features. In International Conference on Com-
puter Vision (ICCV), volume 2, pages 1458–1465.
IEEE.
Holschneider, M., Kronland-Martinet, R., Morlet, J., and
Tchamitchian, P. (1990). A real-time algorithm for
signal analysis with the help of the wavelet transform.
In Wavelets, pages 286–297. Springer.
Kong, S. and Fowlkes, C. (2017). Recurrent scene parsing
with perspective understanding in the loop. arXiv pre-
print arXiv:1705.07238.
Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond
bags of features: Spatial pyramid matching for re-
cognizing natural scene categories. In Computer Vi-
sion and Pattern Recognition (CVPR), volume 2, pa-
ges 2169–2178. IEEE.
Li, Y., Qi, H., Dai, J., Ji, X., and Wei, Y. (2016). Fully
convolutional instance-aware semantic segmentation.
arXiv preprint arXiv:1611.07709.
Lin, G., Milan, A., Shen, C., and Reid, I. (2016a). Refi-
nenet: Multi-path refinement networks with identity
mappings for high-resolution semantic segmentation.
arXiv preprint arXiv:1611.06612.
Lin, G., Shen, C., van den Hengel, A., and Reid, I. (2016b).
Efficient piecewise training of deep structured models
for semantic segmentation. In Computer Vision and
Pattern Recognition (CVPR), pages 3194–3203.
Lin, T.-Y., Maire, M., Belongie, S., Hays, J., Perona, P.,
Ramanan, D., Doll
´
ar, P., and Zitnick, C. L. (2014).
Microsoft coco: Common objects in context. In Eu-
ropean conference on computer vision (ECCV), pages
740–755. Springer.
Long, J., Shelhamer, E., and Darrell, T. (2015a). Fully
convolutional networks for semantic segmentation. In
Computer Vision and Pattern Recognition (CVPR).
Long, J., Shelhamer, E., and Darrell, T. (2015b). Fully con-
volutional networks for semantic segmentation. In
Computer Vision and Pattern Recognition (CVPR),
pages 3431–3440.
Noh, H., Hong, S., and Han, B. (2015). Learning deconvo-
lution network for semantic segmentation. In Interna-
tional Conference on Computer Vision (ICCV), pages
1520–1528.
Ronneberger, O., Fischer, P., and Brox, T. (2015). U-
net: Convolutional networks for biomedical image
segmentation. In International Conference on Medi-
cal Image Computing and Computer-Assisted Inter-
vention, pages 234–241. Springer.
Schuster, R., Wasenm
¨
uller, O., Kuschk, G., Bailer, C., and
Stricker, D. (2018). Sceneflowfields: Dense interpo-
lation of sparse scene flow correspondences. In IEEE
Winter Conference on Computer Vision (WACV).
Vedaldi, A. and Lenc, K. (2015). Matconvnet – convoluti-
onal neural networks for matlab. In Proceeding of the
ACM Int. Conf. on Multimedia.
Wasenm
¨
uller, O., Ansari, M. D., and Stricker, D. (2016).
Dna-slam: Dense noise aware slam for tof rgb-d ca-
meras. In Asian Conference on Computer Vision
Workshop (ACCV workshop). Springer.
Wasenm
¨
uller, O., Bleser, G., and Stricker, D. (2015). Com-
bined bilateral filter for enhanced real-time upsam-
pling of depth images. In International Conference on
Computer Vision Theory and Applications (VISAPP),
pages 5–12.
Wu, Z., Shen, C., and Hengel, A. v. d. (2016). Bridging
category-level and instance-level semantic image seg-
mentation. arXiv preprint arXiv:1605.06885.
Yoshida, T., Wasenm
¨
uller, O., and Stricker, D. (2017).
Time-of-flight sensor depth enhancement for automo-
tive exhaust gas. In IEEE International Conference on
Image Processing (ICIP).
Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2016).
Pyramid scene parsing network. arXiv preprint
arXiv:1612.01105.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
404