din, O. (2014). Automatic detection and quantification
of wbcs and rbcs using iterative structured circle de-
tection algorithm. Computational and mathematical
methods in medicine, 2014.
Bing, L. and Scott, T. (2007). Active contour external force
using vector field convolution for image segmentation.
Acton, vol. 16, pp. 2096 - 2106.
Di Ruberto, C., Loddo, A., and Putzu, L. (2015). a multiple
classifier learning by sampling system for white blood
cells segmentation. proceedings in CAIP, vol. 9257,
pp. 415 - 425.
Di Ruberto, C., Loddo, A., and Putzu, L. (2016). A leucocy-
tes count system from blood smear images. Machine
Vision and Applications, vol. 27, pp. 1151 - 1160.
Gao, W., Yang, L., Zhang, X., and Liu, H. (2010). An
improved sobel edge detection. 2010 3rd Internatio-
nal Conference on Computer Science and Information
Technology, pp. 67 - 71.
Ghane, N., Vard, A., Talebi, A., and Nematollahy, P. (2017).
Segmentation of white blood cells from microscopic
images using a novel combination of k-means cluste-
ring and modified watershed algorithm. ournal of Me-
dical Signals and Sensors. vol. 7, no. 2, pp. 92-101.
Halim, N. H. A., Mashor, M. Y., and Hassan, R. (2011).
Automatic blasts counting for acute leukemia based
on blood samples. International Journal of Research
and Reviews in Computer Science, vol. 2, no. 4.
Kovalev, V. A., Y.Grigoriev, A., and H.Ahn (1996). Robust
recognition of white blood cell images. IEEE Publis-
her, pp. 371-375.
Lata, A., Udesang, K. B., and Joshi, J. J. M. (2016). seg-
mentation and counting of wbcs and rbcs from mi-
croscopic blood sample images. proceedings in MECS
(http://www.mecs-press.org/), vol. 11, pp. 32 - 40.
Loddo, A., Putzu, L., Ruberto, C. D., and Fenu, G. (2016).
A computer-aided system for differential count from
peripheral blood cell images. In 2016 12th Internatio-
nal Conference on Signal-Image Technology Internet-
Based Systems (SITIS), pages 112–118.
Madhloom, H. T., Kareem, S. A., Ariffin, H., Zaidan, A. A.,
Alanazi, H. O., and Zaidan, B. B. (2010). An automa-
ted white blood cell nucleus localization and segmen-
tation using image arithmetic and automated thres-
hold. Journal of Applied Sciences, vol. 10, no. 11,
pp. 959-966.
Mahmood, N. H., Lim, P. C., Mazalan, S. M., and Razak,
M. A. A. (2013). Blood cells extraction using color
based segmentation technique. International Journal
of Life Sciences Biotechnology and Pharma Research,
2(2).
Mohamed, M., Far, B., and Guaily, A. (2012). An effi-
cient technique for white blood cells nuclei automatic
segmentation. IEEE International Conference on Sy-
stems, Man, and Cybernetics (SMC), pp. 220225.
Mohapatra, S., Patra, D., and Satpathy, S. (2013). An en-
semble classifier system for early diagnosis of acute
lymphoblastic leukemia in blood microscopic images.
Journal of Neural Computing and Applications, Arti-
cle in Press,.
Putzu, L., Caocci, G., and Di Ruberto, C. (2014). Leu-
cocyte classification for leukaemia detection using
image processing techniques. Artificial Intelligence
in Medicine, vol. 62 , pp. 179 - 191.
Sarrafzadeh, O., Rabbani, H., Talebi, A., and Banaem, H.
(2014). Selection of the best features for leukocy-
tes classification in blood smear microscopic images.
SPIE Medical Imaging, pp. 90410P 90410P.
Scotti, F. (2006). Robust segmentation and measurements
techniques of white cells in blood microscope images.
IEEE Publisher, pp. 43-48.
Scotti, F. and Piuri, V. (2004). Morphological classifica-
tion of blood leucocytes by microscope images. IEEE
Publisher pp. 103-108.
Sinha, N. and Ramakrishnan, A. G. (2003). Automation of
differential blood count. in proceedings of the confe-
rence on convergent technologies for the asia-pacific
region. IEEE Publisher, vol. 2, pp. 547-551, Taj Resi-
dency, Bangalore.
Unimi (2005). All-idb acute lymphoblastic leukemia image
database for image processing.
Xu, C. and Prince, J. L. (1998). Generalized gradient vector
flow external forces for active contours. Signal Pro-
cess., vol. 71, pp. 131 - 139.
VISAPP 2018 - International Conference on Computer Vision Theory and Applications
234