divided into the rotation part and the translation part,
and they can be calculated separately. This approach
makes the solution more robust.
ACKNOWLEDGEMENTS
This work was supported in part by the Ministry of
Science and Technology, Taiwan, R.O.C., under grant
no. MOST 106-2221-E-126-011.
REFERENCES
Alexiadis, D. S., Kelly, P., Daras, P., O’Connor, N. E.,
Boubekeur, T., and Moussa, M. B. (2011). Evaluat-
ing a dancer’s performance using kinect-based skele-
ton tracking. In Proceedings of the 19th ACM inter-
national conference on Multimedia, pages 659–662.
ACM.
Bokaris, P.-A., Muselet, D., and Tr
´
emeau, A. (2017). 3d
reconstruction of indoor scenes using a single rgb-d
image. In 12th International Conference on Computer
Vision Theory and Applications (VISAPP 2017).
Chen, J., Bautembach, D., and Izadi, S. (2013). Scalable
real-time volumetric surface reconstruction. ACM
Transactions on Graphics (TOG), 32(4):113.
Choi, C. and Christensen, H. I. (2016). Rgb-d object pose
estimation in unstructured environments. Robotics
and Autonomous Systems, 75:595–613.
Doulamis, A., Doulamis, N., Ioannidis, C., Chrysouli,
C., Grammalidis, N., Dimitropoulos, K., Potsiou, C.,
Stathopoulou, E. K., and Ioannides, M. (2015). 5d
modelling: an efficient approach for creating spa-
tiotemporal predictive 3d maps of large-scale cul-
tural resources. ISPRS Annals of the Photogramme-
try, Remote Sensing and Spatial Information Sciences,
2(5):61.
Eigen, D. and Fergus, R. (2015). Predicting depth, surface
normals and semantic labels with a common multi-
scale convolutional architecture. In Proceedings of the
IEEE International Conference on Computer Vision,
pages 2650–2658.
Hemmat, H. J., Pourtaherian, A., Bondarev, E., et al. (2015).
Fast planar segmentation of depth images. In Im-
age Processing: Algorithms and Systems XIII, volume
9399, page 93990I. International Society for Optics
and Photonics.
K
¨
ahler, O., Prisacariu, V. A., Ren, C. Y., Sun, X., Torr, P.,
and Murray, D. (2015). Very high frame rate vol-
umetric integration of depth images on mobile de-
vices. IEEE transactions on visualization and com-
puter graphics, 21(11):1241–1250.
Kainz, B., Hauswiesner, S., Reitmayr, G., Steinberger, M.,
Grasset, R., Gruber, L., Veas, E., Kalkofen, D., Se-
ichter, H., and Schmalstieg, D. (2012). Omnikinect:
real-time dense volumetric data acquisition and appli-
cations. In Proceedings of the 18th ACM symposium
on Virtual reality software and technology, pages 25–
32. ACM.
Keller, M., Lefloch, D., Lambers, M., Izadi, S., Weyrich, T.,
and Kolb, A. (2013). Real-time 3d reconstruction in
dynamic scenes using point-based fusion. In 3DTV-
Conference, 2013 International Conference on, pages
1–8. IEEE.
Laggis, A., Doulamis, N., Protopapadakis, E., and Geor-
gopoulos, A. (2017). a low-cost markerless track-
ing system for trajectory interpretation. ISPRS-
International Archives of the Photogrammetry, Re-
mote Sensing and Spatial Information Sciences, pages
413–418.
Lefloch, D., Weyrich, T., and Kolb, A. (2015). Anisotropic
point-based fusion. In Information Fusion (Fusion),
2015 18th International Conference on, pages 2121–
2128. IEEE.
Merrell, P., Akbarzadeh, A., Wang, L., Mordohai, P.,
Frahm, J.-M., Yang, R., Nist
´
er, D., and Pollefeys,
M. (2007). Real-time visibility-based fusion of depth
maps. In Computer Vision, 2007. ICCV 2007. IEEE
11th International Conference on, pages 1–8. IEEE.
Newcombe, R. A., Izadi, S., Hilliges, O., Molyneaux, D.,
Kim, D., Davison, A. J., Kohi, P., Shotton, J., Hodges,
S., and Fitzgibbon, A. (2011). Kinectfusion: Real-
time dense surface mapping and tracking. In 2011
10th IEEE International Symposium on Mixed and
Augmented Reality, pages 127–136.
Nießner, M., Zollh
¨
ofer, M., Izadi, S., and Stamminger,
M. (2013). Real-time 3d reconstruction at scale us-
ing voxel hashing. ACM Transactions on Graphics
(TOG), 32(6):169.
Ondr
´
u
ˇ
ska, P., Kohli, P., and Izadi, S. (2015). Mo-
bilefusion: Real-time volumetric surface reconstruc-
tion and dense tracking on mobile phones. IEEE
transactions on visualization and computer graphics,
21(11):1251–1258.
Papadopoulos, G. T., Axenopoulos, A., and Daras, P.
(2014). Real-time skeleton-tracking-based human ac-
tion recognition using kinect data. In MMM (1), pages
473–483.
Papazov, C., Marks, T. K., and Jones, M. (2015). Real-time
3d head pose and facial landmark estimation from
depth images using triangular surface patch features.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 4722–4730.
Pradeep, V., Rhemann, C., Izadi, S., Zach, C., Bleyer,
M., and Bathiche, S. (2013). Monofusion: Real-time
3d reconstruction of small scenes with a single web
camera. In Mixed and Augmented Reality (ISMAR),
2013 IEEE International Symposium on, pages 83–88.
IEEE.
Salas-Moreno, R. F., Newcombe, R. A., Strasdat, H., Kelly,
P. H., and Davison, A. J. (2013). Slam++: Simulta-
neous localisation and mapping at the level of objects.
In Proceedings of the IEEE conference on computer
vision and pattern recognition, pages 1352–1359.
Sorkine, O. and Alexa, M. (2007). As-rigid-as-possible sur-
face modeling. In Symposium on Geometry process-
ing, volume 4.