Abrao, M. S., Gonc¸alves, M. O. d. C., Dias Jr, J. A.,
Podgaec, S., Chamie, L. P., and Blasbalg, R. (2007).
Comparison between clinical examination, transvagi-
nal sonography and magnetic resonance imaging for
the diagnosis of deep endometriosis. Human Repro-
duction, 22(12):3092–3097.
Amin, M. A. and Mohammed, M. K. (2015). Overview
of the ImageCLEF 2015 Medical Clustering Task. In
Working Notes of CLEF 2015 - Conference and Labs
of the Evaluation forum, Toulouse, France, September
8-11, 2015.
Bengio, Y., Simard, P. Y., and Frasconi, P. (1994). Learn-
ing long-term dependencies with gradient descent is
difficult. IEEE Transactions on Neural Networks,
5(2):157–166.
Bird, S., Klein, E., and Loper, E. (2009). Natural Language
Processing with Python. O’Reilly, first edition.
Bodenreider, O. (2004). The Unified Medical Lan-
guage System (UMLS): integrating biomedical ter-
minology. Nucleic Acids Research, 32(Database-
Issue):267–270.
Breiman, L. (2001). Random Forests. Machine Learning,
45(1):5–32.
Burges, C. J. C. (1998). A tutorial on support vector ma-
chines for pattern recognition. Data Mining Knowl-
edge Discovery, 2(2):121–167.
Codella, N. C. F., Connell, J. H., Pankanti, S., Mer-
ler, M., and Smith, J. R. (2014). Automated med-
ical image modality recognition by fusion of visual
and text information. In Medical Image Computing
and Computer-Assisted Intervention - MICCAI 2014
- 17th International Conference, Boston, MA, USA,
September 14-18, 2014, Proceedings, Part II, pages
487–495.
Csurka, G., Dance, C. R., Fan, L., Willamowski, J., and
Bray, C. (2004). Visual categorization with bags of
keypoints. In Workshop on Statistical Learning in
Computer Vision, European Conference on Computer
Vision, ECCV 2004, Prague, Czech Republic, May 11-
14, 2004, pages 1–22.
Dalal, N. and Triggs, B. (2005). Histograms of oriented
gradients for human detection. In Proceedings of the
2005 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition (CVPR’05) -
Volume 1 - Volume 01, CVPR ’05, pages 886–893,
Washington, DC, USA. IEEE Computer Society.
Donahue, J., Jia, Y., Vinyals, O., Hoffman, J., Zhang, N.,
Tzeng, E., and Darrell, T. (2014). Decaf: A deep con-
volutional activation feature for generic visual recog-
nition. In Proceedings of the 31th International Con-
ference on Machine Learning, ICML 2014, Beijing,
China, 21-26 June 2014, pages 647–655.
Eickhoff, C., Schwall, I., de Herrera, A. G. S., and M
¨
uller,
H. (2017). Overview of ImageCLEFcaption 2017
- Image Caption Prediction and Concept Detection
for Biomedical Images. In Working Notes of CLEF
2017 - Conference and Labs of the Evaluation Forum,
Dublin, Ireland, September 11-14, 2017.
Guyon, I. and Elisseeff, A. (2003). An Introduction to
Variable and Feature Selection. Journal of Machine
Learning Research, 3:1157–1182.
Hartigan, J. A. and Wong, M. A. (1979). A k-means cluster-
ing algorithm. JSTOR: Applied Statistics, 28(1):100–
108.
Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A.-
a., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P.,
Sainath, T., and Kingsbury, B. (2012). Deep Neural
Networks for Acoustic Modeling in Speech Recog-
nition: The Shared Views of Four Research Groups.
IEEE Signal Processing Magazine, 29(6):82–97.
Hochreiter, S. and Schmidhuber, J. (1997). Long Short-
Term Memory. Neural Computation, 9(8):1735–1780.
Huang, G., Liu, Z., van der Maaten, L., and Weinberger,
K. Q. (2017). Densely Connected Convolutional
Networks. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, CVPR
2017, Honolulu, USA, July 22-25, 2017.
Indyk, P. and Motwani, R. (1998). Approximate Near-
est Neighbors: Towards Removing the Curse of Di-
mensionality. In Proceedings of the 30th Annual
ACM Symposium on Theory of Computing, STOC ’98,
pages 604–613, New York, NY, USA. ACM.
Jolliffe, I. T. (2011). Principal Component Analysis. In In-
ternational Encyclopedia of Statistical Science, pages
1094–1096. Springer Berlin Heidelberg.
Kalpathy-Cramer, J., de Herrera, A. G. S., Demner-
Fushman, D., Antani, S. K., Bedrick, S., and M
¨
uller,
H. (2015). Evaluating performance of biomedical im-
age retrieval systems - An overview of the medical im-
age retrieval task at ImageCLEF 2004-2013. Comput-
erized Medical Imaging and Graphics, 39:55–61.
Koitka, S. and Friedrich, C. M. (2016). Traditional Fea-
ture Engineering and Deep Learning Approaches at
Medical Classification Task of ImageCLEF 2016. In
Working Notes of CLEF 2016 - Conference and Labs
of the Evaluation forum,
´
Evora, Portugal, 5-8 Septem-
ber, 2016., pages 304–317.
Lazebnik, S., Schmid, C., and Ponce, J. (2006). Beyond
Bags of Features: Spatial Pyramid Matching for Rec-
ognizing Natural Scene Categories. In Proceedings of
the 2006 IEEE Computer Society Conference on Com-
puter Vision and Pattern Recognition, CVPR 2006,
Ney York, USA, June 17-22 2006, pages 2169–2178.
LeCun, Y., Bengio, Y., and Hinton, G. E. (2015). Deep
Learning. Nature, 521(7553):436–444.
Lehmann, T. M., G
¨
uld, M. O., Thies, C., Plodowski, B.,
Keysers, D., Ott, B., and Schubert, H. (2004). IRMA
- Content-Based Image Retrieval in Medical Applica-
tions. In MEDINFO 2004 - Proceedings of the 11th
World Congress on Medical Informatics, San Fran-
cisco, California, USA, September 7-11, 2004, pages
842–846.
Li, F.-F. and Perona, P. (2005). A Bayesian Hierarchi-
cal Model for Learning Natural Scene Categories.
In Proceedings of the 2005 IEEE Computer Society
Conference on Computer Vision and Pattern Recogni-
tion, CVPR 2005, San Diego, USA, June 20-26, 2005,
pages 524–531.
Pan, S. J. and Yang, Q. (2010). A Survey on Transfer Learn-
ing. IEEE Transactions on Knowledge and Data En-
gineering, 22(10):1345–1359.
KALSIMIS 2018 - Special Session on Knowledge Acquisition and Learning in Semantic Interpretation of Medical Image Structures
186