Esposito, A., Tarricone, L., Zappatore, M., Catarinucci, L.,
Colella, R. (2010). A framework for context-aware
home-health monitoring. Int. J. of Autonomous and
Adaptive Communications Systems, Vol.3, No.1, pp.75
- 91
Felisberto, F., Laza, R., Fdez-Riverola, F., Pereira, A.
(2015). A distributed multiagent system architecture for
body area networks applied to healthcare
monitoring. BioMed research international, 2015.
Forkan, A., Khalil, I., Ibaida, A., Tari, Z. (2015). BDCaM:
Big Data for Context-aware Monitoring-A Personalized
Knowledge Discovery Framework for Assisted
Healthcare. IEEE transactions on cloud computing,
2015. Retrieved from: http://ieeexplore.ieee.org/
document/7117389/
Gerven, M. (2007) Bayesian networks for clinical decision
support. Radboud University Nijmegen, Nijmegen, the
Netherlands
Hedelin., R., Kenttä, G., Wiklund, U., Bjerle, P.,
Henriksson-Larsén, K. (2000). Short-term overtraining:
effects on performance, circulatory responses, and heart
rate variability. Medicine and science in sports and
exercise, 32(8), pp 1480-1484.
Hozawa, A., Ohkubo, T., Kikuya, M., et al. (2004).
Prognostic value of home heart rate for cardiovascular
mortality in the general population: the Ohasama study.
Am J Hypertens; 17: pp. 1005–1010.
Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.
J., Chung, S., ... & Gerstein, M. (2003). A Bayesian
networks approach for predicting protein-protein
interactions from genomic data. Science, 302(5644),
pp. 449-453.
Javorka, M., Zila, I., Balharek, T., Javorka, K. (2002). Heart
rate recovery after exercise: relations to heart rate
variability and complexity. Braz J Med Biol Res.;35(8),
pp. 991–1000.
Johansen, C., Olsen, R., Pedersen, L., et al. (2013). Resting,
night-time, and 24 h heart rate as markers of
cardiovascular risk in middle-aged and elderly men and
women with no apparent heart disease. Eur Heart J
2013;34: pp. 1732–1739
Kado, D., Lui, L., Cummings, S. (2002). Rapid resting heart
rate: a simple and powerful predictor of osteoporotic
fractures and mortality in older women. J Am Geriatr
Soc 50: pp. 455–460.
Kang, J. (2017). An inference system framework for
personal sensor devices in mobile health and internet of
things networks, PhD thesis, School of Information
Technology, Deakin University. Retrieved from:
http://dro.deakin.edu.au/view/DU:30092154
Klein, A. (2017). Smartwatches know you’re getting a cold
days before you feel ill. New Scientist. Retrieved from:
https://www.newscientist.com/article/2117854-
smartwatches-know-youre-getting-a-cold-days-before-
you-feel-ill/
Knaus, K., Wagner, D., Draper, E., Zimmerman, J.,
Bergner M. and Bastos, P. (1991). The APACHE III
prognostic system. Risk prediction of hospital mortality
for critically ill hospitalised adults. Chest, 100, pp.
1619–1636
Legeai, C., Jouven, X., Tafflet, M., et al. (2011). Resting
heart rate, mortality and future coronary heart disease
in the elderly: the 3C Study. Eur J Cardiovasc Prev
Rehabil;18: pp 488–97.
Leistner, M., Klotsche, J., Palm, S., Pieper, L., Stalla, G. K.,
Lehnert, H., ... & Zeiher, A. M. (2012). Resting heart
rate as a tool for risk stratification in primary care: does
it provide incremental prognostic information?.
European journal of preventive cardiology, 19(2), pp.
275-284.
Li, X., Dunn, J., Salins, D., Zhou, G., Zhou, W., et al.
(2017) Digital Health: Tracking Physiomes and
Activity Using Wearable Biosensors Reveals Useful
Health-Related Information. PLOS Biology 15(1):
e2001402. doi: 10.1371/journal.pbio.2001402
Link, M., Estes, M. (2012) Sudden cardiac death in the
athlete: bridging the gaps between evidence, policy, and
practice. Circulation 125: pp.2511–2516.
Lucas, P. (1995). Logic engineering in medicine. Knowl
Eng Rev, 10 (2), pp. 153–179
Makivić, B., Nikić, M., Willis, M. (2013). Heart rate
variability (HRV) as a tool for diagnostic and
monitoring performance in sport and physical activities.
Journal of Exercise Physiology, vol. 16, pp.103-131
Marcelino, I., Pereira, A. (2009, September). Elder care
modular solution. In Advances in Human-oriented and
Personalized Mechanisms, Technologies, and Services,
2009. CENTRIC'09. Second International Conference
on (pp. 1-6). IEEE.
Murphy, K. (2002). Dynamic Bayesian networks. UC
Berkeley, Berkeley, CA
Nakayama, T., Ohnuki, Y., Niwa, K. (1977). Fall in skin
temperature during exercise. Jpn J Physiol.;27(4), pp.
423–37. pmid:599738
Ohno-Machado, L. (1997). A comparison of Cox
proportional hazards and artificial neural network
models for medical prognosis. Comput Biol Med, 27,
pp. 55–65
Paulino, D., Reis, A., Barroso, J., Paredes, H. (2017).
Mobile devices to monitor physical activity and health
data. 12th Iberian Conference on Information Systems
and Technologies (CISTI); 06/2017,
DOI:10.23919/CISTI.2017.7975771
Pearl, J. (2000). Causality: models, reasoning and
inference. Cambridge University Press, New York, NY
Reis A., Barroso, I., Monteiro, M., Khanal, S., Rodrigues,
V., Filipe, V., Paredes, H., Barroso, J. (2017a).
Designing Autonomous Systems Interactions with
Elderly People. Universal Access in Human–Computer
Interaction. Human and Technological Environments,
01/2017: pp. 603-611; ISBN: 978-3-319-58699-1,
DOI:10.1007/978-3-319-58700-4_49
Reis, A., Lains, J., Paredes, H., Filipe, V., Abrantes, C.,
Ferreira, F., Mendes, R., Amorim, P., Barroso, J.
(2016a). Developing a System for Post-Stroke
Rehabilitation: An Exergames Approach. Universal
Access in Human-Computer Interaction. Users and
Context Diversity, 1st edited by Margherita Antona,
Constantine Stephanidis, 07/2016: pp. 403-413;