Table 2: Comparison of the best facility operation for case 1 among DEEPSO, BSO, GBSO, MBSO, and the proposed
GMBSO in an industrial model.
DEEPSO BSO GBSO MBSO GMBSO
A B A B A B A B A B
1 0.00 8.21 0.00 7.85 0.00 7.59 0.00 7.00 0.00 7.25
2 0.00 5.13 0.00 5.09 0.00 5.22 0.00 7.07 0.00 7.16
3 0.00 8.08 0.00 7.97 0.00 8.03 0.00 7.22 0.00 7.15
4 0.00 8.08 0.00 8.25 0.00 8.22 0.00 7.17 0.00 7.00
5 0.00 8.29 0.00 9.22 0.00 9.23 0.00 9.17 0.00 9.17
6 0.00 8.90 0.00 9.09 0.00 8.91 0.00 8.90 0.00 9.25
7 0.00 9.03 0.00 8.58 0.00 9.18 0.00 9.24 0.00 9.12
8 6.00 1.09 6.00 1.15 6.71 0.30 7.46 1.84 8.98 0.12
9 10.65 2.15 12.26 0.81 12.36 0.55 8.98 1.99 10.74 0.22
10 10.92 2.24 10.48 2.48 11.63 1.37 13.85 0.95 14.71 0.33
11 14.06 3.81 17.47 1.35 16.68 2.20 18.32 0.61 18.80 0.17
12 14.32 8.67 7.73 15.71 18.45 4.91 20.00 4.67 19.72 4.98
13 14.99 2.61 14.12 5.13 18.54 0.59 15.48 2.31 17.06 0.88
14 13.02 9.20 18.21 3.91 18.81 3.49 19.40 2.78 20.00 2.00
15 13.86 9.32 17.22 6.03 19.05 4.14 20.00 3.08 20.00 3.07
16 18.84 6.07 16.77 6.51 18.55 4.55 16.14 4.96 20.00 1.10
17 10.88 13.03 16.30 6.68 18.48 4.43 18.27 4.51 20.00 2.79
18 18.16 3.84 20.00 2.17 18.55 3.44 20.00 1.97 20.00 1.99
19 20.00 3.11 18.96 3.77 18.37 4.07 20.00 3.04 19.15 3.85
20 19.44 1.96 16.53 3.97 17.14 3.66 17.25 4.09 20.00 1.23
21 17.26 0.09 13.74 3.93 16.79 0.87 16.33 0.93 17.12 0.08
22 7.26 4.97 8.73 3.27 10.84 1.16 11.56 0.59 12.13 0.09
23 0.00 13.03 0.00 12.84 0.00 12.97 0.00 13.05 0.00 12.92
24 0.00 10.38 0.00 10.45 0.00 10.45 0.00 10.45 0.00 10.20
209.65 72.15 214.50 66.88 240.97 39.72 243.02 38.32 258.43 22.90
*) A: the amount of electric power output by GTG, B: the amount of purchased electric power, Sum: summation of each column A, and B
at 8 to 22 hours.
Conference on Consumer Electronics (GCCE), pp.12-
15.
Marckle, G., Savic, D. A., and Walters, G. A., 1995.
Application of Genetic Algorithms to Pump Scheduling
for Water Supply, Proc. of the First International
Conference on Genetic Algorithms in Engineering
Systems: Innovations and Applications, pp.400-405.
Matsui, T., Kosaka, T., Komaki, D., Yamaguchi, N., and
Fukuyama., Y., 2015. Energy Consumption Models in
Smart Community, Proc. of IEEJ National Conference,
1-H1-4 (in Japanese).
Ministry of Economy, Trade, and Industry of Japan., 2014
Smart Community, .http://www.meti.go.jp/english/
policy/energy_environment/smart_community/ (in
Japanese).
Miranda, V., and WIN-OO, N., 2006. New experiments
with EPSO—Evolutionary particle swarm
optimization, Proc. of IEEE Swarm Intelligence
symposium, pp.162-169.
Miranda, V., and Alves, R., 2013. Differential Evolutionary
Particle Swarm Optimization (DEEPSO): a Successful
Hybrid, Proc. of the 11th Brazilian Congress on
Computational Intelligence (BRICS-CCI), Porto de
Galinhas, Brazil, pp.368-374.
Sato, M., and Fukuyama, Y., 2016a. Total Optimization of
Smart Community by Particle Swarm Optimization
Considering Reduction of Search Space, Proc. of 2016
IEEE International Conference on Power System
Technology (POWERCON).
Sato, M., and Fukuyama, Y., 2016b. Total Optimization of
Smart Community by Differential Evolution
Considering Reduction of Search Space, Proc. of IEEE
TENCON 2016.
Sato, M., and Fukuyama, Y., 2017. Total Optimization of
Smart Community by Differential Evolutionary Particle
Swarm Optimization Considering Reduction of Search
Space, IEEJ Transaction on Electronics, Imformation
and Systems, Vol.137, No.9, pp.1266-1278 (in
Japanese).
Sato, M., and Fukuyama, Y., 2018. Total Optimization of
Smart Community by Global-best Brain Storm
Optimization, Proc. of GECCO 2018.
Shi, Y., Tan, Y., Shi, Y., Chai, Y., and Wang, G. (ed.),
2011. Brain Storm Optimization Algorithm. Advances
in swarm intelligence lecture notes in computer science
Vol.6728 pp.295–303
Suzuki, R. and Okamoto, T., 2012. An Optimization
Benchmark Problem for Operational Planning of an
Energy Plant, Proc. of Electronics, Information, and
Systems Society Meeting of IEEJ, TC7-2 (in Japanese).
Tohoku Bureau of Economy, Trade and Industry., 2012.
http://www.tohoku.meti.go.jp/s_kokusai/pdf/en.pdf (in
Japanese).