resentation of knowledge in information models is
also weak. Furthermore, it was discovered that
knowledge is unequally distributed among employ-
eesin the same department and that access to the in-
formation models is not guaranteed across the depart-
ment. The documentation of knowledge and its acces-
sibility is essential to avoid errors. Also errors in the
processes themselves or potentials for optimizations
can often only be recognized if these have already
been documented in advance. The questionnaire and
the interviews with experts showed that there is po-
tential for development in SME. Among other things,
the modelling of business processes due to variations
was considered complex. Especially the documenta-
tion of these process variants is important to achieve
a holistic representation of the process flows.
As part of the empirical study, expert interviews
were conducted in four SME. Various factors have
been identified that influence the order picking pro-
cess in SME. Together with the companies, these var-
iants of the picking processes were documented. With
the help of adaptive information modeling, an artifact
was created from these process variants as part of the
design science process. Using this artifact, the support
of knowledge management in SME through infor-
mation modeling was demonstrated (RQ2). Specifi-
cally, variants of the picking process were collected
and modelled in four SME. Based on the influencing
factors, the adaptive information model was extended
by configuration terms. Through using element selec-
tion by terms, all process variants found in the com-
panies in Figure 3 can be recreated. The correctness
of the information model and the software tool that
executes the element selection by terms was proven
in the evaluation of this paper.
Overall, adaptive information models can support
SME in documenting their expert knowledge. Espe-
cially in processes with many variation steps, adap-
tive information modeling enables a more compact
option for long-term digitalization of knowledge,
which requires less effort in maintenance and man-
agement. Above all, the possibility of optimizing pro-
cesses on the basis of the documented processes has
great advantages.
ACKNOWLEDGEMENTS
The technology transfer project "Competence Net-
work Intelligent Production Logistics" is funded by
the European Regional Development Fund (ERDF) -
Operational Program "Investment in Growth and Em-
ployment" Bavaria 2014 - 2020.
REFERENCES
Becker, J. (Ed.) (2007). Reference modeling. Heidelberg:
Physica-Verl.
Becker, J., Knackstedt, R., Kuropka, D., & Delfmann, P.
(2003). Konfiguration fachkonzeptioneller Referenz-
model. WI. (2003), 901–920.
Becker, J., Kugeler, M., & Rosemann, M. (Eds.) (2012).
Prozessmanagement: Ein Leitfaden zur prozess-
orientierten Organisationsgestaltung. Berlin,
Heidelberg: Springer Gabler.
Bitbucket. ipimlandshut / ipimmodeler. Retrieved April 26,
2018, from https://bitbucket.org/ipimlandshut/ipim
modeler.
Delfmann, P. (2006). Adaptive Referenzmodellierung:
Methodische Konzepte zur Konstruktion und Anwendung
wiederverwendungsorientierter Informationsmodelle.
Günthner, W. A., Blomeyer, N., Reif, R., & Schedlbauer, M.
(2009). Pick-by-Vision: Augmented Reality unterstützte
Kommissionierung. Garching: Lehrstuhl für
Fördertechnik Materialfluß Logistik (fml) Techn. Univ.
München.
Hevner, A. R., & Chatterjee, S. (2010). Design Research in
Information Systems Theory and Practice. Integrated
Series in Information Systems Volume 22.
Hilpoltsteiner, D., Seel, C., & Dörndorfer, J. (2018).
Konzeption und Implementierung eines Softwarewerk-
zeuges zum Management von BPMN-Prozessvarianten.
In R. Hofmann & W. Alm (Eds.), Wissenstransfer in der
Wirtschaftsinformatik. Fachgespräch im Rahmen der
MKWI 2018 (pp. 15–24). Aschaffenburg: Hochschule
Aschaffenburg, Information Management Institut.
La Rosa, M., van der Aalst, W. M. P., Dumas, M., & Milani,
F. P. (2017). Business Process Variability Modeling: A
Survey. ACM Computing Surveys, 50(1), 1–45.
Meuser, M., & Nagel, U. (2009). Das Experteninterview —
konzeptionelle Grundlagen und methodische Anlage. In
S. Pickel, D. Jahn, H.-J. Lauth, & G. Pickel (Eds.),
Methoden der vergleichenden Politik- und Sozial-
wissenschaft. Neue Entwicklungen und Anwendungen
(1st ed., pp. 465–479). Wiesbaden: VS Verlag für
Sozialwissenschaften / GWV Fachverlage GmbH
Wiesbaden.
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatter-
jee, S. (2007). A Design Science Research Methodology
for Information Systems Research, 24(3), 45–77.
Schmelzer, H. J., & Sesselmann, W. (2013). Geschäfts-
prozessmanagement in der Praxis: Kunden zufrieden
stellen ; Produktivität steigern ; Wert erhöhen. München:
Hanser.
Seel, C. (2010). Reverse Method Engineering.
Wirtschaftsinformatik - Theorie und Anwendung.
Seel, C. (2017). Metamodellbasierte Erweiterung der BPMN
zur Modellierung und Generierung von Prozess-
varianten.
Timinger, H., & Seel, C. (2016). Ein Ordnungsrahmen für
adaptives hybrides Projektmanagement. GPM-Magazin
PMaktuell, 2016(4), 55–61.
VDI 3590 (April 1994). Düsseldorf: VDI-Gesellschaft
Fördertechnik Materialfluß Logistik.
Womack, J. P., Jones, D. T., & Roos, D. (2006). The machine
that changed the world. New York, NY:
HarperPerennial.
Picking Process Variability in Small and Medium-Sized Enterprises: State of the Art and Knowledge Modeling
127