
resentation  of  knowledge  in  information  models  is 
also  weak.  Furthermore,  it  was  discovered  that 
knowledge is unequally distributed among employ-
eesin the same department and that access to the in-
formation models is not guaranteed across the depart-
ment. The documentation of knowledge and its acces-
sibility is essential to avoid errors. Also errors in the 
processes themselves or potentials for optimizations 
can often only be recognized  if these  have  already 
been documented in advance. The questionnaire and 
the interviews with experts showed that there is po-
tential for development in SME. Among other things, 
the modelling of business processes due to variations 
was considered complex. Especially the documenta-
tion of these process variants is important to achieve 
a holistic representation of the process flows.  
As part of the empirical study, expert interviews 
were conducted in four SME. Various factors have 
been identified that influence the order picking pro-
cess in SME. Together with the companies, these var-
iants of the picking processes were documented. With 
the help of adaptive information modeling, an artifact 
was created from these process variants as part of the 
design science process. Using this artifact, the support 
of  knowledge  management  in  SME  through  infor-
mation modeling was demonstrated (RQ2). Specifi-
cally, variants of the picking process were collected 
and modelled in four SME. Based on the influencing 
factors, the adaptive information model was extended 
by configuration terms. Through using element selec-
tion by terms, all process variants found in the com-
panies in Figure 3 can be recreated. The correctness 
of the information model and the software tool that 
executes the element selection by terms was proven 
in the evaluation of this paper. 
Overall, adaptive information models can support 
SME in documenting their expert knowledge. Espe-
cially in processes with many variation steps, adap-
tive information modeling enables a  more compact 
option  for  long-term  digitalization  of  knowledge, 
which requires less effort in maintenance and man-
agement. Above all, the possibility of optimizing pro-
cesses on the basis of the documented processes has 
great advantages.  
ACKNOWLEDGEMENTS 
The  technology  transfer  project  "Competence  Net-
work Intelligent Production Logistics" is funded by 
the European Regional Development Fund (ERDF) - 
Operational Program "Investment in Growth and Em-
ployment" Bavaria 2014 - 2020. 
REFERENCES 
Becker,  J.  (Ed.)  (2007).  Reference  modeling.  Heidelberg: 
Physica-Verl. 
Becker,  J.,  Knackstedt, R., Kuropka,  D., &  Delfmann, P. 
(2003).  Konfiguration  fachkonzeptioneller  Referenz-
model. WI. (2003), 901–920. 
Becker,  J.,  Kugeler,  M.,  &  Rosemann,  M.  (Eds.)  (2012). 
Prozessmanagement:  Ein  Leitfaden  zur  prozess-
orientierten  Organisationsgestaltung.  Berlin, 
Heidelberg: Springer Gabler. 
Bitbucket. ipimlandshut / ipimmodeler. Retrieved April 26, 
2018,  from  https://bitbucket.org/ipimlandshut/ipim 
modeler. 
Delfmann,  P.  (2006).  Adaptive  Referenzmodellierung: 
Methodische Konzepte zur Konstruktion und Anwendung 
wiederverwendungsorientierter Informationsmodelle. 
Günthner, W. A., Blomeyer, N., Reif, R., & Schedlbauer, M. 
(2009). Pick-by-Vision: Augmented Reality unterstützte 
Kommissionierung.  Garching:  Lehrstuhl  für 
Fördertechnik Materialfluß Logistik (fml) Techn. Univ. 
München. 
Hevner, A. R., & Chatterjee, S. (2010). Design Research in 
Information  Systems  Theory  and  Practice.  Integrated 
Series in Information Systems Volume 22. 
Hilpoltsteiner,  D.,  Seel,  C.,  &  Dörndorfer,  J.  (2018). 
Konzeption und Implementierung eines Softwarewerk-
zeuges zum Management von BPMN-Prozessvarianten. 
In R. Hofmann & W. Alm (Eds.), Wissenstransfer in der 
Wirtschaftsinformatik.  Fachgespräch  im  Rahmen  der 
MKWI  2018  (pp. 15–24).  Aschaffenburg:  Hochschule 
Aschaffenburg, Information Management Institut. 
La Rosa, M., van der Aalst, W. M. P., Dumas, M., & Milani, 
F. P. (2017). Business Process Variability Modeling: A 
Survey. ACM Computing Surveys, 50(1), 1–45. 
Meuser, M., & Nagel, U. (2009). Das Experteninterview — 
konzeptionelle Grundlagen und methodische Anlage. In 
S.  Pickel,  D.  Jahn,  H.-J.  Lauth,  &  G.  Pickel  (Eds.), 
Methoden  der  vergleichenden  Politik-  und  Sozial-
wissenschaft.  Neue  Entwicklungen  und  Anwendungen 
(1st  ed.,  pp. 465–479).  Wiesbaden:  VS  Verlag  für 
Sozialwissenschaften  /  GWV  Fachverlage  GmbH 
Wiesbaden. 
Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatter-
jee, S. (2007). A Design Science Research Methodology 
for Information Systems Research, 24(3), 45–77. 
Schmelzer,  H.  J.,  &  Sesselmann,  W.  (2013).  Geschäfts-
prozessmanagement  in  der  Praxis:  Kunden  zufrieden 
stellen ; Produktivität steigern ; Wert erhöhen. München: 
Hanser. 
Seel,  C.  (2010).  Reverse  Method  Engineering. 
Wirtschaftsinformatik - Theorie und Anwendung. 
Seel, C. (2017). Metamodellbasierte Erweiterung der BPMN 
zur  Modellierung  und  Generierung  von  Prozess-
varianten. 
Timinger, H., & Seel, C. (2016). Ein Ordnungsrahmen für 
adaptives hybrides Projektmanagement. GPM-Magazin 
PMaktuell, 2016(4), 55–61. 
VDI  3590  (April  1994).  Düsseldorf:  VDI-Gesellschaft 
Fördertechnik Materialfluß Logistik. 
Womack, J. P., Jones, D. T., & Roos, D. (2006). The machine 
that  changed  the  world.  New  York,  NY: 
HarperPerennial. 
Picking Process Variability in Small and Medium-Sized Enterprises: State of the Art and Knowledge Modeling
127