Benov, D. M. (2016). The manhattan project, the first elec-
tronic computer and the monte carlo method. Monte
Carlo Methods and Applications, 22(1):73–79.
Brameier, M. F. and Banzhaf, W. (2010). Linear Genetic
Programming. Springer Publishing Company, Incor-
porated, 1st edition.
Chaslot, G. M. J.-B., Winands, M. H. M., van Den Herik,
H. J., Uiterwijk, J. W. H. M., and Bouzy, B. (2008).
Progressive strategies for monte-carlo tree search.
New Mathematics and Natural Computation (NMNC),
04(03):343–357.
Coulom, R. (2007a). Computing Elo Ratings of Move Pat-
terns in the Game of Go. In van den Herik, H. J.,
Winands, M., Uiterwijk, J., and Schadd, M., edi-
tors, Computer Games Workshop, Amsterdam, Net-
herlands.
Coulom, R. (2007b). Efficient selectivity and backup ope-
rators in monte-carlo tree search. In Proceedings
of the 5th International Conference on Computers
and Games, CG’06, pages 72–83, Berlin, Heidelberg.
Springer-Verlag.
Eckhardt, R. (1987). Stan Ulam, John von Neumann, and
the Monte Carlo Method. Los Alamos Science, pages
131–143.
Finnsson, H. and Björnsson, Y. (2008). Simulation-based
approach to general game playing. In Proceedings
of the 23rd National Conference on Artificial Intelli-
gence - Volume 1, AAAI’08, pages 259–264. AAAI
Press.
Gelly, S. and Silver, D. (2011). Monte-carlo tree search and
rapid action value estimation in computer go. Artif.
Intell., 175(11):1856–1875.
Islam, M. (2018). ECJ evolutionary computation library v25
with expansion pipeline. https://github.com/mohiul/
ecj-v25-expansion/ releases. Accessed: 2018-05-23.
Keijzer, M. (2003). Improving symbolic regression with in-
terval arithmetic and linear scaling. In Proceedings
of the 6th European Conference on Genetic Program-
ming, EuroGP’03, pages 70–82, Berlin, Heidelberg.
Springer-Verlag.
Koza, J. R. (1992). Genetic Programming: On the Pro-
gramming of Computers by Means of Natural Se-
lection. MIT Press, Cambridge, MA, USA.
Krawiec, K. (2016). Behavioral Program Synthesis with
Genetic Programming, volume 618 of Studies in Com-
putational Intelligence. Springer International Publis-
hing. http://www.cs.put.poznan.pl/kkrawiec/bps.
Krawiec, K. and Lichocki, P. (2009). Approximating geo-
metric crossover in semantic space. In Proceedings of
the 11th Annual Conference on Genetic and Evolutio-
nary Computation, GECCO ’09, pages 987–994, New
York, NY, USA. ACM.
Krawiec, K. and Lichocki, P. (2010). Using Co-solvability
to Model and Exploit Synergetic Effects in Evolution,
pages 492–501. Springer Berlin Heidelberg, Berlin,
Heidelberg.
Lim, J. and Yoo, S. (2016). Field report: Applying monte
carlo tree search for program synthesis. In Sarro, F.
and Deb, K., editors, Search Based Software Engi-
neering, pages 304–310, Cham. Springer Internatio-
nal Publishing.
Lorentz, R. J. (2008). Amazons discover monte-carlo. In
Proceedings of the 6th International Conference on
Computers and Games, CG ’08, pages 13–24, Berlin,
Heidelberg. Springer-Verlag.
Luke, S. (1998). ECJ evolutionary computation li-
brary. Available for free at http://cs.gmu.edu/∼eclab/
projects/ecj/.
Luke, S. (2017). Ecj then and now. In Proceedings
of the Genetic and Evolutionary Computation Con-
ference Companion, GECCO ’17, pages 1223–1230,
New York, NY, USA. ACM.
McDermott, J., White, D. R., Luke, S., Manzoni, L., Cas-
telli, M., Vanneschi, L., Jaskowski, W., Krawiec, K.,
Harper, R., De Jong, K., and O’Reilly, U.-M. (2012).
Genetic programming needs better benchmarks. In
Proceedings of the 14th Annual Conference on Gene-
tic and Evolutionary Computation, GECCO ’12, pa-
ges 791–798, New York, NY, USA. ACM.
Miller, J., editor (2011). Cartesian Genetic Programming.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Miller, J. F. and Thomson, P. (2000). Cartesian Genetic
Programming, pages 121–132. Springer Berlin Hei-
delberg, Berlin, Heidelberg.
Miller, J. F., Thomson, P., Fogarty, T., and Ntroduction, I.
(1997). Designing electronic circuits using evolutio-
nary algorithms. arithmetic circuits: A case study.
Moraglio, A., Krawiec, K., and Johnson, C. G. (2012). Geo-
metric Semantic Genetic Programming, pages 21–31.
Springer Berlin Heidelberg, Berlin, Heidelberg.
Nordin, P., Banzhaf, W., and Francone, F. (1999). Efficient
evolution of machine code for cisc architectures using
instruction blocks and homologous crossover. In Ad-
vances in Genetic Programming 3, chapter 12, pages
275–299. MIT Press.
Pagie, L. and Hogeweg, P. (1997). Evolutionary consequen-
ces of coevolving targets. Evol. Comput., 5(4):401–
418.
Sturtevant, N. R. (2008). An analysis of uct in multi-player
games. In Proceedings of the 6th International Con-
ference on Computers and Games, CG ’08, pages 37–
49, Berlin, Heidelberg. Springer-Verlag.
Vladislavleva, E. J., Smits, G. F., and Den Hertog, D.
(2009). Order of nonlinearity as a complexity me-
asure for models generated by symbolic regression
via pareto genetic programming. Trans. Evol. Comp,
13(2):333–349.
White, D. R., McDermott, J., Castelli, M., Manzoni, L.,
Goldman, B. W., Kronberger, G., Ja
´
skowski, W.,
O’Reilly, U.-M., and Luke, S. (2013). Better gp
benchmarks: community survey results and propo-
sals. Genetic Programming and Evolvable Machines,
14(1):3–29.
White, D. R., Yoo, S., and Singer, J. (2015). The program-
ming game: Evaluating mcts as an alternative to gp
for symbolic regression. In Proceedings of the Com-
panion Publication of the 2015 Annual Conference
on Genetic and Evolutionary Computation, GECCO
Companion ’15, pages 1521–1522, New York, NY,
USA. ACM.
Winands, M. H. M. and Björnsson, Y. (2010). Evaluation
function based monte-carlo loa. In Proceedings of the
12th International Conference on Advances in Com-
puter Games, ACG’09, pages 33–44, Berlin, Heidel-
berg. Springer-Verlag.
IJCCI 2018 - 10th International Joint Conference on Computational Intelligence
66