ans of sub-graphs with the maximum number of or igi-
nal terms. The application of this methodology to ap-
proxim ately one hundr e d Reuters documents has de-
monstrated that if a pre dominant topic for the analy-
sed do cument exists, a recurring pattern turns out, i.e.,
there exist a connected sub-graph with the maximum
number of original terms extracted fr om the analysed
docume nt. Thus, it is possible to recognize the to-
pic not in relation to the frequency of occurrence of
terms, but in relation to topological characteristics of
the graph, m ainly the connectivity of th e sub-graphs
and their dimension. This strategy goes beyond the
mere word-centric approach used in the most spread
docume nt representation model like the Space Vector
Model because leaves aside the statistic of the docu-
ment and suggests fu rther researches in the topic de-
tection field, which will be the subject of further stu-
dies.
REFERENCES
Begelman, G., Keller, P., and Smadja, F. (2006). Automa-
ted Tag Clustering: Improving search and exploration
in the tag space. In P roceedings of t he Collaborative
Web Tagging Workshop at the WWW 2006, Edinburgh,
Scotland.
Caldarola, E., Picariello, A., and Rinaldi, A. (2016). Ex-
periences in wordnet visualization with l abeled graph
databases. Communications in Computer and Infor-
mation Science, 631:80–99.
Caldarola, E. G ., Picariello, A., and Rinaldi, A. M.
(2015). Big graph-based data visualization experien-
ces: The wordnet case study. In Knowledge Discovery,
Knowledge Engineering and Knowledge Management
(IC3K), 2015 7th Internati onal Joint Conference on,
volume 1, pages 104–115. IEEE.
Caldarola, E. G. and Rinaldi, A. M. (2016). Improving
the visualization of wordnet large l exical database
through semantic tag clouds. In Big Data (BigData
Congress), 2016 IEE E International Congress on, pa-
ges 34–41. IEEE.
Cattuto, C., Schmitz, C., Baldassarri, A ., Servedio, V. D. P.,
Loreto, V., Hotho, A., Grahl, M., and Stumme, G.
(2007). Network properties of folksonomies. AI C om-
mun., 20(4):245–262.
Chen, Y.-X., Santamar´ıa, R., Butz, A., and Ther´on, R.
(2009). Tagclusters: Semantic aggr egation of colla-
borative tags beyond tagclouds. In Proceedings of
the 10th International Symposium on Smart Graphics,
SG ’09, pages 56–67, B erlin, Heidelberg. Springer-
Verlag.
Fujimura, K., Fujimura, S., Matsubayashi, T., Yamada, T.,
and Okuda, H . (2008). Topigraphy: visualization for
large-scale tag clouds. In Proceedings of the 17th in-
ternational conference on World Wide Web, WWW
’08, pages 1087–1088, New York, NY, USA. ACM.
Gabrilovich, E. and Markovitch, S. (2007). Computing se-
mantic relatedness using wikipedia-based explicit se-
mantic analysis. In IJcAI, volume 7, pages 1606–
1611.
Hassan-Montero, Y. and Herrero-Solana, V. ( 2006). Impro-
ving tag-clouds as visual information retrieval interfa-
ces. In InScit2006: International Conference on Mul-
tidisciplinary Information Sciences and Technologies.
Hu, X. and Wu, B. (2006). Automatic keyword ex-
traction using linguistic features. In Proceedings of
the Sixth IEEE International Conference on Data Mi-
ning - Workshops, pages 19–23, Washington, DC,
USA. IEEE Computer Society.
Kaptein, R. (2012). Using wordclouds to navigate and sum-
marize twitter search. In Proceedings of the 2nd Euro-
pean Workshop on Human-Computer I nteraction and
Information Retrieval, pages 67–70. CEUR.
Lewis, D. D. (1992). Representation and Learning in In-
formation Retrieval. PhD thesis, Computer Science
Dept.; Univ. of Massachusetts; Amherst, MA 01003.
Technical Report 91–93.
Lewis, D. D. (1997). Reuters-21578 text categorization test
collection, distribution 1.0. http://ww w. research. att.
com/˜ lewis/reuters21578. html.
Li, R., Bao, S., Yu, Y., Fei, B., and Su, Z. (2007). Towards
effective browsing of large scale social annotations.
In Proceedings of the 16th international conference
on World Wide Web, WWW ’07, pages 943–952, New
York, NY, USA. ACM.
McCandless, M., H at cher, E., and Gospodnetic, O. (2010).
Lucene in Action: Covers Apache Lucene 3.0. Man-
ning Publications Co.
Miller, G. A. (1995). Wordnet: a lexical database for eng-
lish. Communications of the ACM, 38(11):39–41.
Rinaldi, A. M. (2008). A content-based approach for do-
cument representation and retrieval. In Proceedings
of the Eighth ACM Symposium on Document Engi-
neering, DocEng ’08, pages 106–109, New York, NY,
USA. ACM.
Rinaldi, A. M. ( 2009). An ontology-driven approach for se-
mantic information retrieval on the web. ACM Tran-
sactions on Internet Technology (TOIT), 9(3):10.
Rinaldi, A. M. (2012). Improving tag clouds wi th ontolo-
gies and semantics. In Database and Expert Systems
Applications (DEXA), 2012 23rd International Works-
hop on, pages 139–143. IEEE.
Rinaldi, A. M. (2013). Document summarization using
semantic clouds. In Semantic Computing (ICSC),
2013 I EEE Seventh International Conference on, pa-
ges 100–103. IEEE.
Rivadeneira, A. W., Gruen, D. M., Muller, M. J., and Mil-
len, D. R. (2007). Getting our head in the clouds: to-
ward evaluation studies of tagclouds. In Proceedings
of the SIGCHI conference on Human factors in com-
puting systems, CHI ’07, pages 995–998, New York,
NY, USA. ACM.
Shannon, P., Mar kiel, A., Ozier, O., Baliga, N. S ., Wang,
J. T., Ramage, D., Amin, N., Schwikowski, B., and
Ideker, T. ( 2003). Cytoscape: a software environment