learning in avoiding various obstacles such as moving
and static vehicles, and pedestrians, among others.
REFERENCES
Bazilinskyy, P., N. Heisterkamp, P. Luik, S. Klevering, A.
Haddou, M. Zult and J. de Winter (2018). Eye
movements while cycling in GTA V. Tools and Methods
of Competitive Engineering (TMCE 2018). Las Palmas
de Gran Canaria, Spain.
Bengio, Y. (2009). Learning Deep Architectures for AI.
Montreal, Canada, Université de Montréal.
Bertozzi, M., L. Bombini, et al (2008). Obstacle detection
and classification fusing radar and visio. 2008 IEEE
Intelligent Vehicles Symposium: 608 - 613.
Bevilacqua, A. and S. Vaccari (2007). Real time detection of
stopped vehicles in traffic scenes. IEEE International
Conference on Advanced Video Signal Based
Surveillance, London, UK.
Coelingh, E., A. Eidehall and M. Bengtsson (2010). Collision
warning with full auto brake and pedestrian detection-a
practical example of automatic emergency braking. 13
th
IEEE International Conference on Intelligent
Transportation Systems (ITSC): 155-160.
Donges, N. (2018). "The Random Forest Algorithm." from
https://towardsdatascience.com/the-random-forest-
algorithm-d457d499ffcd.
Fernandez, S., R. Hadfi, T. Ito, I. Marsa-Maestre and J. R.
Velasco (2016). "Ontology-Based Architecture for
Intelligent Transportation Systems Using a Traffic
Sensor Network." Sensors 16(8).
Game_Engine. (2016). "Unity 3D." from https://unity3d.
com/.
García, F., A. de la Escalera and J. M. Armingol (2013).
Enhanced obstacle detection based on Data Fusion for
ADAS applications. 16
th
IEEE Conference on Intelligent
Transportation Systems (ITSC): 1370-1375.
Hina, M. D., C. Thierry, A. Soukane and A. Ramdane-Cherif
(2017). Ontological and Machine Learning Approaches
for Managing Driving Context in Intelligent
Transportation. KEOD 2017, 9th International
Conference on Knowledge Engineering and Ontology
Development, Madeira, Portugal.
Iqbal, A., C. Busso and N. R. Gans (2015). Adjacent Vehicle
Collision Warning System using Image Sensor and
Inertial Measurement Unit. 2015 ACM International
Conference on Multimodal Interaction.
Ithape, A. A. (2017). Artificial Intelligence and Machine
Learning in ADAS. Vector India Conference 2017. Pune,
India.
Kannan, S., A. Thangavelu and R. Kalivaradhan (2010). "An
Intelligent Driver Assistance System (I-DAS) for
Vehicle Safety Modeling Using Ontology Approach."
Intl Journal of Ubiquitous Computing 1(3): 15 – 29.
Lan, J., Y. Jiang, G. Fan, D. Yu and Q. Zhang (2016). "Real-
time automatic obstacle detection method for traffic
surveillance in urban traffic." Journal of Signal
Processing Systems 82(3): 357-371.
Lee, D. and H. Yeo (2016). "Real-Time Rear-End Collision-
Warning System Using a Multilayer Perceptron Neural
Network." IEEE Transactions on Intelligent
Transportation Systems 17(11): 3087-3097.
Levi, D., N. Garnett, E. Fetaya and I. Herzlyia (2015).
StixelNet: A Deep Convolutional Network for Obstacle
Detection and Road Segmentation. British Machine
Vision Conference 2015.
Linzmeier, D., M. Skutek, M. Mekhaiel and K. Dietmayer
(2005). A pedestrian detection system based on
thermopile and radar sensor data fusion. 8th International
Conference on Information Fusion.
Louridas, P. and C. Ebert (2016). "Machine Learning." IEEE
Software 33(5): 110-115.
Lv, Y., Y. Duan, W. Kang, Z. Li and F.-Y. Wang (2015).
"Traffic flow prediction with big data: A deep learning
approach." IEEE Transactions on Intelligent
Transportation Systems 16(2): 865 - 873.
Mitchell, T. (1997). Machine Learning, McGraw Hill.
Protégé. (2016). "Protégé: Open-source ontology editor."
from http://protege.stanford.edu.
Pyo, J., J. Bang and Y. Jeong (2016). Front collision warning
based on vehicle detection using CNN. 2016 Intl SoC
Design Conference (ISOCC), Jeju, Korea.
ResearchNews (2013). Key Technologies for Preventing
Crashes, Berkshire, U.K, Thatcham.
Rummelhard, L., A. Nègre, M. Perrollaz and C. Laugier
(2016). Probabilistic grid-based collision risk prediction
for driving application, Springer.
Saxena, A. (2017). "Machine Learning Algorithms in
Autonomous Cars." Retrieved 27 September 2017, from
http://visteon.bg/2017/03/02/machine-learning.
Shinzato, P. Y., D. F. Wolf and C. Stiller (2014). Road terrain
detection: Avoiding common obstacle detection
assumptions using sensor fusion. IEEE Intelligent
Vehicles Symposium Proceedings.
Sutton, R. S. and A. G. Barto (2017). Reinforcement
Learning: An Introduction (Second Edition), MIT Press.
Tchankue, P., J. Wesson and D. Vogts (2013). Using
Machine Learning to Predict Driving Context whilst
Driving. SAICSIT 2013, South African Institute for
Computer Scientists and Information Technologists. East
London, South Africa: 47-55.
Technopedia. (2018). "Multilayer Perceptron (MLP)." from
https://www.techopedia.com/
Wang, X., L. Xu, H. Sun, J. Xin and N. Zheng (2014). Bionic
vision inspired on-road obstacle detection and tracking
using radar and visual information. 17
th
IEEE
International Conference on Intelligent Transportation
Systems (ITSC): 39–44.
Wolcott, R. W. and R. Eustice (2016). Probabilistic Obstacle
Partitioning of Monocular Video for Autonomous
Vehicles. British Machine Vision Conference 2016.
World_Health_Organization. (2017). "Global Health
Observatory (GHO) data." from http://www.who.int/
gho/road_safety/mortality/number_text/en/.
Zeng, D., J. Xu and G. Xu (2008). "Data fusion for traffic
incident detection using D-S evidence theory with
probabilistic SVMs." Journal of Computers 3(10): 36–
43.