Kotis, K. and Vouros, G. A. (2006). Human-centered on-
tology engineering: The hcome methodology. Know-
ledge and Information Systems, 10(1):109–131.
Maffei, A., Srinivasan, S., Castillejo, P., Mart
´
ınez, J. F.,
Iannelli, L., Bjerkan, E., and Glielmo, L. (2018). A
semantic-middleware-supported receding horizon op-
timal power flow in energy grids. IEEE Transactions
on Industrial Informatics, 14(1):35–46.
McEvoy, A., Markvart, T., and Castaner, L. (2011). Practi-
cal Handbook of Photovoltaics, Second Edition: Fun-
damentals and Applications. Academic Press.
McGuinness, D. L., Van Harmelen, F., et al. (2004). Owl
web ontology language overview. W3C recommenda-
tion, 10(10):2004.
Musen, M. (2015). The prot
´
eg
´
e project: A look back and a
look forward. AI Matters, 1(4):4–12.
Noy, N. F., McGuinness, D. L., et al. (2001). Ontology
development 101: A guide to creating your first onto-
logy. Technical Report. Stanford University.
Paulescu, M. (2008). Solar irradiation via air temperature
data. In Modeling Solar Radiation at the Earths Sur-
face, pages 175–192. Springer.
Pelland, S., Remund, J., Kleissl, J., Oozeki, T., and De Bra-
bandere, K. (2013). Photovoltaic and solar forecas-
ting: state of the art. IEA PVPS, Task, 14.
Piazza, A. and Faso, G. (2014). Concentrated solar power:
Ontologies for solar radiation modeling and forecas-
ting. In Advances onto the Internet of Things, pages
325–337. Springer.
Prema, V. and Rao, K. U. (2015). Development of statistical
time series models for solar power prediction. Rene-
wable Energy, 83:100–109.
Reikard, G., Haupt, S. E., and Jensen, T. (2017). Fore-
casting ground-level irradiance over short horizons:
Time series, meteorological, and time-varying para-
meter models. Renewable Energy, 112:474–485.
Rijgersberg, H., van Assem, M., and Top, J. (2013). Onto-
logy of units of measure and related concepts. Seman-
tic Web, 4(1):3–13.
Ruiz-Arias, J. A. and Gueymard, C. A. (2018). Worldwide
inter-comparison of clear-sky solar radiation models:
Consensus-based review of direct and global irradi-
ance components simulated at the earth surface. Solar
Energy.
S
´
anchez-Cervantes, J. L., Radzimski, M., Rodriguez-
Enriquez, C. A., Alor-Hern
´
andez, G., Rodr
´
ıguez-
Mazahua, L., S
´
anchez-Ram
´
ırez, C., and Rodr
´
ıguez-
Gonz
´
alez, A. (2016). Sreqp: A solar radiation ex-
traction and query platform for the production and
consumption of linked data from weather stations sen-
sors. Journal of Sensors, 2016.
Staab, S. and Studer, R. (2013). Handbook on ontologies.
Springer Science & Business Media.
Staroch, P. (2013). A weather ontology for predictive cont-
rol in smart homes. MS Thesis.
Swartout, B., Patil, R., Knight, K., and Russ, T. (1996).
Toward distributed use of large-scale ontologies. In
Proc. of the Tenth Workshop on Knowledge Acquisi-
tion for Knowledge-Based Systems, pages 138–148.
Uschold, M. and Gruninger, M. (1996). Ontologies: Princi-
ples, methods and applications. The knowledge engi-
neering review, 11(02):93–136.
Uschold, M., King, M., Moralee, S., and Zorgios, Y. (1998).
The enterprise ontology. The knowledge engineering
review, 13(1):31–89.
Voyant, C., Notton, G., Kalogirou, S., Nivet, M.-L., Paoli,
C., Motte, F., and Fouilloy, A. (2017). Machine le-
arning methods for solar radiation forecasting: A re-
view. Renewable Energy, 105:569–582.
W3 (2003). Owl-geo. https://www.w3.org/2003/01/geo/.
W3 (2005). Weather-station ontology. https://www.w3.org/
2005/Incubator/ssn/ssnx/weather-station/station.
W3 (2017). Owl-time. https://www.w3.org/TR/owl-time/.
Widiss, R. and Porter, K. (2014). A review of variable gene-
ration forecasting in the west. NREL Technical Report,
303:275–3000.
Zieher, M., Lange, M., and Focken, M. (2015). Variable
renewable energy forecasting - integration into elec-
tricity grids and markets, a best practice guide. Ger-
man Federal Ministry for Economic Cooperation and
Development.
KEOD 2018 - 10th International Conference on Knowledge Engineering and Ontology Development
270