ous optimization. IEEE Transactions on Evolutionary
Computation, 17(6):797–822.
Kauffman, S. A. and Johnsen, S. (1991). Coevolution to
the edge of chaos: coupled fitness landscapes, poised
states, and coevolutionary avalanches. Journal of the-
oretical biology, 149(4):467–505.
Kazimipour, B., Li, X., and Qin, A. K. (2014). A review
of population initialization techniques for evolution-
ary algorithms. In Evolutionary Computation (CEC),
2014 IEEE Congress on, pages 2585–2592. IEEE.
Liu, Y., Yao, X., Zhao, Q., and Higuchi, T. (2001). Scal-
ing up fast evolutionary programming with coopera-
tive coevolution. In Evolutionary Computation, 2001.
Proceedings of the 2001 Congress on, volume 2,
pages 1101–1108. Ieee.
Mei, Y., Li, X., and Yao, X. (2014). Cooperative coevolu-
tion with route distance grouping for large-scale ca-
pacitated arc routing problems. IEEE Transactions on
Evolutionary Computation, 18(3):435–449.
Mei, Y., Omidvar, M. N., Li, X., and Yao, X. (2016).
A competitive divide-and-conquer algorithm for un-
constrained large-scale black-box optimization. ACM
Transactions on Mathematical Software (TOMS),
42(2):13.
Meselhi, M. A., Elsayed, S. M., Essam, D. L., and Sarker,
R. A. (2017). Fast differential evolution for big opti-
mization. In Software, Knowledge, Information Man-
agement and Applications (SKIMA), 2017 11th Inter-
national Conference on, pages 1–6. IEEE.
Molina, D., Lozano, M., S
´
anchez, A. M., and Herrera, F.
(2011). Memetic algorithms based on local search
chains for large scale continuous optimisation prob-
lems: Ma-ssw-chains. Soft Computing, 15(11):2201–
2220.
Munetomo, M. and Goldberg, D. E. (1999). Linkage iden-
tification by non-monotonicity detection for overlap-
ping functions. Evolutionary computation, 7(4):377–
398.
Omidvar, M. N., Li, X., Mei, Y., and Yao, X. (2014). Co-
operative co-evolution with differential grouping for
large scale optimization. IEEE Transactions on evo-
lutionary computation, 18(3):378–393.
Omidvar, M. N., Li, X., Yang, Z., and Yao, X. (2010).
Cooperative co-evolution for large scale optimization
through more frequent random grouping. In Evolu-
tionary Computation (CEC), 2010 IEEE Congress on,
pages 1–8. IEEE.
Parsopoulos, K. E. (2009). Cooperative micro-differential
evolution for high-dimensional problems. In Proceed-
ings of the 11th Annual conference on Genetic and
evolutionary computation, pages 531–538. ACM.
Potter, M. A. and De Jong, K. A. (1994). A cooperative
coevolutionary approach to function optimization. In
International Conference on Parallel Problem Solving
from Nature, pages 249–257. Springer.
Potter, M. A. and Jong, K. A. D. (2000). Cooperative coevo-
lution: An architecture for evolving coadapted sub-
components. Evolutionary computation, 8(1):1–29.
Ray, T. and Yao, X. (2009). A cooperative coevolution-
ary algorithm with correlation based adaptive vari-
able partitioning. In Evolutionary Computation, 2009.
CEC’09. IEEE Congress on, pages 983–989. IEEE.
Salomon, R. (1996). Re-evaluating genetic algorithm per-
formance under coordinate rotation of benchmark
functions. a survey of some theoretical and practical
aspects of genetic algorithms. BioSystems, 39(3):263–
278.
Sayed, E., Essam, D., and Sarker, R. (2012). Using hybrid
dependency identification with a memetic algorithm
for large scale optimization problems. In Asia-Pacific
Conference on Simulated Evolution and Learning,
pages 168–177. Springer.
Sayed, E., Essam, D., Sarker, R., and Elsayed, S.
(2015). Decomposition-based evolutionary algorithm
for large scale constrained problems. Information Sci-
ences, 316:457–486.
Segredo, E., Paechter, B., Segura, C., and Gonz
´
alez-Vila,
C. I. (2018). On the comparison of initialisation strate-
gies in differential evolution for large scale optimisa-
tion. Optimization Letters, 12(1):221–234.
Shi, Y.-j., Teng, H.-f., and Li, Z.-q. (2005). Cooperative
co-evolutionary differential evolution for function op-
timization. In International Conference on Natural
Computation, pages 1080–1088. Springer.
Sun, Y., Kirley, M., and Halgamuge, S. K. (2015). Extended
differential grouping for large scale global optimiza-
tion with direct and indirect variable interactions. In
Proceedings of the 2015 Annual Conference on Ge-
netic and Evolutionary Computation, pages 313–320.
ACM.
Sun, Y., Kirley, M., and Halgamuge, S. K. (2017). A re-
cursive decomposition method for large scale continu-
ous optimization. IEEE Transactions on Evolutionary
Computation.
Tang, K., Li, X., Suganthan, P., Yang, Z., and Weise, T.
(2009). Benchmark functions for the cec 2010 spe-
cial session and competition on large-scale global op-
timization: Nature inspired computation and applica-
tions laboratory, university of science and technology
of china. Applicat. Lab., Univ. Sci. Technol. China,
Hefei, China, Tech. Rep.
Van den Bergh, F. and Engelbrecht, A. P. (2004). A cooper-
ative approach to particle swarm optimization. IEEE
transactions on evolutionary computation, 8(3):225–
239.
Yang, M., Omidvar, M. N., Li, C., Li, X., Cai, Z., Kaz-
imipour, B., and Yao, X. (2017). Efficient resource
allocation in cooperative co-evolution for large-scale
global optimization. IEEE Transactions on Evolution-
ary Computation, 21(4):493–505.
Yang, Z., Tang, K., and Yao, X. (2007). Differential evolu-
tion for high-dimensional function optimization. In
Evolutionary Computation, 2007. CEC 2007. IEEE
Congress on, pages 3523–3530. IEEE.
Yang, Z., Tang, K., and Yao, X. (2008a). Large scale evo-
lutionary optimization using cooperative coevolution.
Information Sciences, 178(15):2985–2999.
Yang, Z., Tang, K., and Yao, X. (2008b). Self-
adaptive differential evolution with neighborhood
search. In Evolutionary Computation, 2008. CEC
2008.(IEEE World Congress on Computational Intel-
ligence). IEEE Congress on, pages 1110–1116. IEEE.
IJCCI 2018 - 10th International Joint Conference on Computational Intelligence
224