information, linking messages with the same theme
in common, and even generating metrics for
classifying emotions.
As future works, we suggest improvements to the
translation process, performing bi-gram and tri-gram
words as proposed in the work by Lopes Rosa
(2015). Use the new method proposed to classify
emotions at a second level, such as anger, fear, love
and hate; above all, to use a base similar to
Sentiwordnet with values of positivity, negativity
and more accurate objectivity for the dominance of
calamity.
ACKNOWLEDGEMENTS
The authors are grateful to the CNPQ process
141077/2015-8 for the support received.
REFERENCES
Berners-Lee, Tim. The WorldWideWeb browser. World
Wide Web Consortium. Homepage,
https://www.w3.org/People/Berners-Lee/WorldWide
Web.html, last accessed 2018/03/ 01.
Catae, F. S. Classificação Automática de Texto por Meio
de Similaridade de Palavras: um algoritmo mais
eficiente. Master's Dissertation, Universidade de São
Paulo (2012).
Chaubard, F., Fang, M., Genthial, G. et al. Natural
language processing with deep learning. Lecture
Notes: Part I - Winter - 2017. Homepage,
https://tensorflowkorea.files.word press.com/2017/03/
cs224n-2017winter-notes-all.pdf, last accessed
2018/04/15.
Dosciatti, M. M.; Ferreira, E. C. L. P. C. Identificando
emoções em textos em português do brasil usando
máquina de vetores de suporte em solução multiclasse.
ENIAC-Encontro Nacional de Inteligência Artificial e
Computacional. Fortaleza, Brasil (2013).
Duarte, E. S. Sentiment analysis on twitter for the
portuguese language. PhD Thesis, Faculdade de
Ciências e Tecnologia (2013).
Esuli, A., Sebastiani, F. Sentiwordnet: A publicly
available lexical resource for opinion mining. In: In
Proceedings of the 5th Conference on Language
Resources and Evaluation - LREC’06, 417-422
(2006).
Freitas, L. D; Vieira, R. Exploring resources for sentiment
analysis in portuguese language. In: IEEE. 2015
Brazilian Conference on Intelligent Systems (BRACIS)
(2015).
Freitas, L. A. de. Feature-level sentiment analysis applied
to brazilian Portuguese reviews. PhD Thesis,
Pontifícia Universidade Católica do Rio Grande do Sul
(2015).
Grigori, S. et al. Empirical study of machine learning
based approach for opinion mining in tweets.
In Proceedings of the 11th Mexican international
conference on Advances in Artificial Intelligence
(2012).
Hamouda, A., Rohaim, M. Reviews classification using
sentiwordnet lexicon. In: World Congress on
Computer Science and Information Technology
(2011).
Internet World Stats. Top 10 Languages Used in the Web -
December 31, 2017. Homepage,
https://www.internetworldstats.com/stats7.htm, last
accessed 2018/04/01.
Internet World Stats. Top 20 Countries With the Highest
Number of Internet Users - December 31, 2017.
Homepage, https://www.internetworldstats.com/
top20.htm, last accessed 2018/02/01.
Kanavos, A. et al. Conversation Emotional Modeling in
Social Networks, Tools with Artificial Intelligence
(ICTAI), 2014 IEEE 26th International Conference
(2014).
Liu, B. Sentiment Analysis and Opinion Mining
(Synthesis Lectures on Human Language
Technologies. California: Morgan & Claypool
Publishers (2012).
Lopes Rosa, R. Análise de sentimentos e afetividade de
textos extraídos das redes sociais. Tese de Doutorado
– Escola Politécnica da Universidade de São Paulo
(2015).
Percy, C. E. et al. Synchronic Corpus Linguistics – Papers
from the sixteenth International. Conference on
English Language and Research on Computerized
Corpora (ICAME 16), Amsterdam/Atlanta (1996).
Plutchik, R. The nature of emotions. v. 89, n. 4, p. 344–
350 (2001).
Porshnev, A.; Redkin, I.; Shevchenko, A., "Machine
Learning in Prediction of Stock Market Indicators
based on Historical Data and Data from Twitter
Sentiment Analysis," Data Mining Workshops
(ICDMW), 2013 IEEE 13th International Conference
(2013).
Sousa, R. C. C. Identificando Sentimentos de Textos em
Português com o Sentiwordnet traduzido. Monografia
– UFC, curso de Ciência da Computação (2016).
Santos, D. L. B. Metodologia de Identificação de
Polaridade em Textos com Base em Projetos de Lei
Brasileiros. Dissertação de mestrado – UFRJ,
Programa de Engenharia Civil (2017).
Segers, R., Caselli, T., Vossen, P. The Circumstantial
Event Ontology (CEO). Proceedings of the Events and
Stories in the News Workshop. Association for
Computational Linguistics, Vancouver, Canada
(2017).
Semantic Web - W3C. Semantic Web. Homepage,
https://www.w3.org/standards/semantic web/, last
accessed 2018/03/01.
The Statistics Portal. Most-used languages on Twitter as
of September 2013. Homepage,
https://www.statista.com/statistics/267129/most-used-
languages-on-twitter/, last accessed 2018/04/08.