Farmakiotou, D., Karkaletsis, V., Koutsias, J., Sigletos, G.,
Spyropoulos, C. D., and Stamatopoulos, P. (2000).
Rule-based named entity recognition for greek finan-
cial texts. In Proceedings of the Workshop on Com-
putational lexicography and Multimedia Dictionaries
(COMLEX 2000), pages 75–78. Citeseer.
FigShare (2018). Simplifying your research workflow.
accessed June 12, 2018.
GDSN, G. (2018). The Global Data Synchronisation Net-
work. accessed June 12, 2018.
Gkoutos, G. V., Schofield, P. N., and Hoehndorf, R. (2012).
The units ontology: a tool for integrating units of me-
asurement in science. Database, 2012:bas033.
Gomaa, W. H. and Fahmy, A. A. (2013). A survey of text
similarity approaches. International Journal of Com-
puter Applications, 68(13).
Habibi, M., Weber, L., Neves, M., Wiegandt, D. L., and Le-
ser, U. (2017). Deep learning with word embeddings
improves biomedical named entity recognition. Bioin-
formatics, 33(14):i37–i48.
Hanisch, D., Fundel, K., Mevissen, H.-T., Zimmer, R.,
and Fluck, J. (2005). Prominer: rule-based protein
and gene entity recognition. BMC bioinformatics,
6(1):S14.
Huang, Z., Xu, W., and Yu, K. (2015). Bidirectional
lstm-crf models for sequence tagging. arXiv preprint
arXiv:1508.01991.
Jensen, K., Panagiotou, G., and Kouskoumvekaki, I. (2014).
Integrated text mining and chemoinformatics analy-
sis associates diet to health benefit at molecular level.
PLoS computational biology, 10(1):e1003432.
Lample, G., Ballesteros, M., Subramanian, S., Kawa-
kami, K., and Dyer, C. (2016). Neural architec-
tures for named entity recognition. arXiv preprint
arXiv:1603.01360.
Leaman, R., Wei, C.-H., Zou, C., and Lu, Z. (2015). Mining
patents with tmchem, gnormplus and an ensemble of
open systems. In Proce. The fifth BioCreative chal-
lenge evaluation workshop, pages 140–146.
Lopez, M. M. and Kalita, J. (2017). Deep learning applied
to nlp. arXiv preprint arXiv:1703.03091.
Lu, Z., Kao, H.-Y., Wei, C.-H., Huang, M., Liu, J., Kuo,
C.-J., Hsu, C.-N., Tsai, R. T.-H., Dai, H.-J., Okazaki,
N., et al. (2011). The gene normalization task in bio-
creative iii. BMC bioinformatics, 12(8):S2.
Metzler, D., Dumais, S., and Meek, C. (2007). Similarity
measures for short segments of text. In European Con-
ference on Information Retrieval, pages 16–27. Sprin-
ger.
Miller, R. A., Gieszczykiewicz, F. M., Vries, J. K., and
Cooper, G. F. (1992). Chartline: providing biblio-
graphic references relevant to patient charts using the
umls metathesaurus knowledge sources. In Procee-
dings of the Annual Symposium on Computer Appli-
cation in Medical Care, page 86. American Medical
Informatics Association.
Morgan, A. A., Lu, Z., Wang, X., Cohen, A. M., Fluck, J.,
Ruch, P., Divoli, A., Fundel, K., Leaman, R., Haken-
berg, J., et al. (2008). Overview of biocreative ii gene
normalization. Genome biology, 9(2):S3.
M
¨
uller, H.-M., Kenny, E. E., and Sternberg, P. W. (2004).
Textpresso: an ontology-based information retrieval
and extraction system for biological literature. PLoS
biology, 2(11):e309.
Petasis, G., Vichot, F., Wolinski, F., Paliouras, G., Karkalet-
sis, V., and Spyropoulos, C. D. (2001). Using machine
learning to maintain rule-based named-entity recogni-
tion and classification systems. In Proceedings of the
39th Annual Meeting on Association for Computatio-
nal Linguistics, pages 426–433. Association for Com-
putational Linguistics.
Piskorski, J. and Yangarber, R. (2013). Information ex-
traction: past, present and future. In Multi-source,
multilingual information extraction and summariza-
tion, pages 23–49. Springer.
PRECIOUS (2018). Preventive Care Infrastructure based
On Ubiquitous Sensing. accessed June 12, 2018.
QuaLiFY (2018). Information service for personalised nu-
trition and lifestyle advice. accessed June 12, 2018.
Ramanan, S., Broido, S., and Nathan, P. S. (2013). Perfor-
mance of a multi-class biomedical tagger on clinical
records. In CLEF (Working Notes).
Real, R. and J.M.Vargas (1996). The probabilistic basis of
jaccard’s index of similarity. Systematic biology, pa-
ges 380–385.
Rindflesch, T. C., Tanabe, L., Weinstein, J. N., and Hunter,
L. (2000). Edgar: extraction of drugs, genes and re-
lations from the biomedical literature. In Pacific Sym-
posium on Biocomputing. Pacific Symposium on Bio-
computing, page 517. NIH Public Access.
Rockt
¨
aschel, T., Weidlich, M., and Leser, U. (2012). Chem-
spot: a hybrid system for chemical named entity re-
cognition. Bioinformatics, 28(12):1633–1640.
Santos, C. N. d. and Guimaraes, V. (2015). Boosting named
entity recognition with neural character embeddings.
arXiv preprint arXiv:1505.05008.
Settles, B. (2010). Active learning literature survey. Uni-
versity of Wisconsin, Madison, 52(55-66):11.
Xia, J., Zhang, X., Yuan, D., Chen, L., Webster, J., and
Fang, A. C. (2013). Gene prioritization of resis-
tant rice gene against xanthomas oryzae pv. oryzae by
using text mining technologies. BioMed research in-
ternational, 2013.
Zenodo (2018). Zenodo. accessed June 12, 2018.
Zhou, X., Zhang, X., and Hu, X. (2006). Maxmatcher: Bi-
ological concept extraction using approximate dictio-
nary lookup. In Pacific Rim International Conference
on Artificial Intelligence, pages 1145–1149. Springer.
KDIR 2018 - 10th International Conference on Knowledge Discovery and Information Retrieval
322