REFERENCES
Aue, A. and Gamon, M. (2005). Customizing sentiment
classifiers to new domains: A case study. In Procee-
dings of recent advances in natural language proces-
sing (RANLP), volume 1, pages 2–1.
Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C.
(2003). A neural probabilistic language model. Jour-
nal of machine learning research, 3(Feb):1137–1155.
Bengio, Y., Simard, P., and Frasconi, P. (1994). Learning
long-term dependencies with gradient descent is diffi-
cult. IEEE transactions on neural networks, 5(2):157–
166.
Blitzer, J., Dredze, M., and Pereira, F. (2007). Biographies,
bollywood, boom-boxes and blenders: Domain adap-
tation for sentiment classification. In Proceedings of
the 45th annual meeting of the association of compu-
tational linguistics, pages 440–447.
Bollegala, D., Mu, T., and Goulermas, J. Y. (2016). Cross-
domain sentiment classification using sentiment sen-
sitive embeddings. IEEE Transactions on Knowledge
and Data Engineering, 28(2):398–410.
Bollegala, D., Weir, D., and Carroll, J. (2013). Cross-
domain sentiment classification using a sentiment sen-
sitive thesaurus. IEEE transactions on knowledge and
data engineering, 25(8):1719–1731.
Cho, K., Van Merri
¨
enboer, B., Gulcehre, C., Bahdanau, D.,
Bougares, F., Schwenk, H., and Bengio, Y. (2014).
Learning phrase representations using rnn encoder-
decoder for statistical machine translation. arXiv pre-
print arXiv:1406.1078.
Collobert, R. and Weston, J. (2008). A unified architec-
ture for natural language processing: Deep neural net-
works with multitask learning. In Proceedings of the
25th international conference on Machine learning,
pages 160–167. ACM.
Dai, M., Huang, S., Zhong, J., Yang, C., and Yang,
S. (2017). Influence of noise on transfer learning
in chinese sentiment classification using gru. In
2017 13th International Conference on Natural Com-
putation, Fuzzy Systems and Knowledge Discovery
(ICNC-FSKD), pages 1844–1849. IEEE.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer,
T. K., and Harshman, R. (1990). Indexing by latent
semantic analysis. Journal of the American society
for information science, 41(6):391.
Deng, Z.-H., Luo, K.-H., and Yu, H.-L. (2014). A study of
supervised term weighting scheme for sentiment ana-
lysis. Expert Systems with Applications, 41(7):3506–
3513.
Domeniconi, G., Moro, G., Pagliarani, A., and Pasolini,
R. (2015a). Cross-domain sentiment classification via
polarity-driven state transitions in a markov model. In
International Joint Conference on Knowledge Disco-
very, Knowledge Engineering, and Knowledge Mana-
gement, pages 118–138. Springer.
Domeniconi, G., Moro, G., Pagliarani, A., and Pasolini, R.
(2015b). Markov chain based method for in-domain
and cross-domain sentiment classification. In Kno-
wledge Discovery, Knowledge Engineering and Kno-
wledge Management (IC3K), 2015 7th International
Joint Conference on, volume 1, pages 127–137. IEEE.
Domeniconi, G., Moro, G., Pagliarani, A., and Pasolini, R.
(2017). On deep learning in cross-domain sentiment
classification. In Proceedings of the 9th Internatio-
nal Joint Conference on Knowledge Discovery, Kno-
wledge Engineering and Knowledge Management.
Domeniconi, G., Moro, G., Pasolini, R., and Sartori, C.
(2016). A Comparison of Term Weighting Schemes
for Text Classification and Sentiment Analysis with a
Supervised Variant of tf.idf, pages 39–58. Springer In-
ternational Publishing, Cham.
Dos Santos, C. N. and Gatti, M. (2014). Deep convolutional
neural networks for sentiment analysis of short texts.
In COLING, pages 69–78.
Franco-Salvador, M., Cruz, F. L., Troyano, J. A., and Rosso,
P. (2015). Cross-domain polarity classification using
a knowledge-enhanced meta-classifier. Knowledge-
Based Systems, 86:46–56.
Glorot, X., Bordes, A., and Bengio, Y. (2011). Domain
adaptation for large-scale sentiment classification: A
deep learning approach. In Proceedings of the 28th
international conference on machine learning (ICML-
11), pages 513–520.
Graves, A., Wayne, G., and Danihelka, I. (2014). Neural
turing machines. arXiv preprint arXiv:1410.5401.
Graves, A., Wayne, G., Reynolds, M., Harley, T., Da-
nihelka, I., Grabska-Barwi
´
nska, A., Colmenarejo,
S. G., Grefenstette, E., Ramalho, T., Agapiou, J.,
et al. (2016). Hybrid computing using a neural
network with dynamic external memory. Nature,
538(7626):471–476.
He, Y., Lin, C., and Alani, H. (2011). Automatically ex-
tracting polarity-bearing topics for cross-domain sen-
timent classification. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 123–131. Association for Computational Lin-
guistics.
Hochreiter, S. and Schmidhuber, J. (1997). Long short-term
memory. Neural computation, 9(8):1735–1780.
Irsoy, O. and Cardie, C. (2014). Modeling compositionality
with multiplicative recurrent neural networks. arXiv
preprint arXiv:1412.6577.
Kalchbrenner, N., Grefenstette, E., and Blunsom, P. (2014).
A convolutional neural network for modelling senten-
ces. arXiv preprint arXiv:1404.2188.
Kim, Y. (2014). Convolutional neural networks for sentence
classification. arXiv preprint arXiv:1408.5882.
Klein, D. and Manning, C. D. (2003). Accurate unlexicali-
zed parsing. In Proceedings of the 41st annual meet-
ing of the association for computational linguistics.
Kumar, A., Irsoy, O., Ondruska, P., Iyyer, M., Bradbury, J.,
Gulrajani, I., Zhong, V., Paulus, R., and Socher, R.
(2016). Ask me anything: Dynami memory networks
for natural language processing. In International Con-
ference on Machine Learning, pages 1378–1387.
Le, Q. and Mikolov, T. (2014). Distributed representations
of sentences and documents. In Proceedings of the
Cross-domain & In-domain Sentiment Analysis with Memory-based Deep Neural Networks
137