This study contributes in creating classification
sentiment model regarding to East Java governor
election that can automatically and accurately
classify tweets by using Naïve Bayes and TF word
weighting method. The result of this study was based
only on social media, especially Twitter. It will be
even better if the result can be obtained from other
social media like Facebook, Instagram, or other
online media.
5 CONCLUSION
Based on the results of the classification system and
system application, it can be concluded t
hat
Naïve
Bayes classifier is a method that can be applied to
classify sentiments on Twitter. This was indicated by
the high performance of the system that was made. In
the first system, the system performance obtained
accuracy of 98.99%, precision of 93.44%, recall of
97.78%, and f-measure of 95.56%. Whereas in the
second system, system performance obtained
accuracy of 98.95%, precision of 97.78%, recall of
98.55%, and f-measure of 98,17%.
Based on data obtained from Twitter, Twitter
users tend to choose the first governor candidate,
Khofifah Indar Parawansa. This conclusion can be
taken based on the fact that the first governor
candidate gets more attention from Twitter users. In
addition, the percentage of
positive sentiments for
the first governor candidate was greater than that for
the second governor candidate and the percentage
of negative sentiments for the first governor
candidate was smaller than that for the second
governor candidate.
REFERENCES
Aggarwal, C. & Zhai, C., 2013. A Survey of Text
Classification Algorithm. pp. 169-170.
Balagatabi, Z. N., 2012. Comparison of Decision Tree and
Naive Bayes Methods in Classification of Researcher's
Cognitive Style in Academic Environment. Journal of
Advance in Computer Research, 3(2), pp. 23-24.
Buntoro, G. A., 2016. Analisis Sentimen Calon Gubernur
DKI Jakarta 2017 di Twitter. Integer Journal, pp. 32-
41.
Espinall, E. et al., 2017. Vote Buying in Indonesia:
Candidate Strategies, Market Logic and Effectiveness.
Journal of East Asian Studies, Volume 17, pp. 1-27.
Faradhillah, N. Y. A., Kusumawardani, R. P. & Hafidz, I.,
2016. Eksperimen Sistem Klasifikasi Analisa Sentimen
Twitter pada Akun Resmi Pemerintah Kota Surabaya
Berbasis Pembelajaran Mesin. Surabaya, SESINDO.
Hotta, H. S., Shrivas, A. K. & Singhai, S. K., 2013.
Artificial Neural Network, Decision Tree and Statistical
Techniques Applied for Designing and Developing E-
mail Classifier. International Journal of Recent
Technology and Engineering, 1(6), pp. 164-169.
Juniawan, I., 2009. Klasifikasi Dokumen Teks Berbahasa
Indonesia Menggunakan Minor Component Analysis,
Bogor: Institut Pertanian Bogor.
Kusen, E. & Strembeck, M., 2018. Politics, sentiments, and
misinformation: An analysis of the Twitter discussion
on the 2016 Austrian Presidential Election. Online
Social Network and Media, Volume 5, pp. 37-50.
Lestari, A. R. T., Perdana, R. S. & Fauzi, M. A., 2017.
Analisis Sentimen Tentang Opini Pilkada DKI 2017
Pada Dokumen Twitter Berbahasa Indonesia
Menggunakan Naive Bayes dan Pembobotan Emoji.
Jurnal Pengembangan Teknologi Informasi dan Ilmu
Komputer, Desember, 1(12), pp. 1718-1724.
Liu, B., 2012. Sentiment Analysis and Opinion Mining. 1st
ed. s.l.:Morgan & Claypool Publishers.
Manning, C. D., Raghavan, P. & Schutze, H., 2009. An
Introduction to Information Retrieval. Cambridge:
Cambridge University Press.
Mujilahwati, S., 2016. Pre-processing Text Mining pada
Data Twitter. Yogyakarta, SENTIKA.
Nurhuda, F., Sihwi, S. W. & Doewes, A., 2013. Analisis
Sentimen Masyarakat terhadap Calon Presiden
Indonesia 2014 berdasarkan Opini dari Twitter
Menggunakan Metode Naive Bayes Classifier.
JURNAL ITSMART, 2(2), pp. 35-42.
Prasetyo, E., 2014. DATA MINING Mengolah Data
Menjadi Informasi Menggunakan Matlab. Yogyakarta:
ANDI.
Rini, D. C., Farida, Y. & Puspitasari, D., 2016. Klasifikasi
Menggunakan Metode Hybrid Bayessian-Neural
Network (Studi Kasus: Identifikasi Virus Komputer).
JURNAL MATEMATIKA "MANTIK", 01(02), pp. 38-
43.
Wongso, R. et al., 2017. News Article Text Classification
in Indonesian Language. Procedia Computer Science,
Issue 116, pp. 137-143.
Yaqub, U., Chun, S. A., Atluri, V. & Vaidya, J., 2017.
Analysis of political discourse on twitter in the context
of the 2016 US presidential elections. Governor
Information Quarterly, pp. 1-14.
Yulian, E., 2018. Text Mining dengan K-Means Clustering
pada Tema LGBT dalam Arsip Tweet Masyarakat Kota
Bandung.
JURNAL MATEMATIKA "MANTIK", pp. 53-
58.
Zulfa, I. & Winarko, E., 2017. Sentimen Analisis Tweet
Berbahasa Indonesia dengan Deep Belief Network.
IJCCS, 11(2), pp. 187-198.