modifications and line index value between actual
and predicted tends to coincide and be able to follow
the pattern of the value of stock index JSX and LQ-
45.
4 CONCLUSIONS
This research showed that the index of JSX after
using the technique of a modified fuzzy time series
is able to provide value Mean Square Error (MSE) =
0.476, and Average Forecasting Error (AFER) =
0.0081% where the obtained value is much lower
than is possible using Fuzzy Time Series unmodified
(MSE = 3,782 and AFER = 0.0685%). On the index
of LQ-45, the modified fuzzy time series technic is
able to provide the MSE = -0.0449 and AFER =
0.0120% which is also lower than the prediction
using the technique of fuzzy time series unmodified
(MSE = -0.419 and AFER = 0.114% ). The results
of this research have found that the modification of
fuzzy time series at intervals redivided step able to
provide better forecasting accuracy.
REFERENCES
Chen, S. M. 2002. Forecasting Enrollments Based On
High-Order Fuzzy Time Series. Cybernetics And
Systems: An International Journal. 33: 1-16.
Chen, S.M dan Hsu, C.C. 2004. A New Method to
Forecast Enrollments Using Fuzzy Time Series.
International Journal of Applied Science and
Engineering 2 (3). pp : 234-244.
Chen. 1996. Chen, S. M. 1996. Forecasting Enrollments
Based On Fuzzy Time Series. Fuzzy Sets And Systems.
81. pp: 311-319.
Cheng, C.H., Chen, T.L., dan Teoh, H.J., 2008. Fuzzy
time series based on adaptive expectation model for
TAIEX forecasting. International Journal of Expert
System with Application. 34 (2008). pp : 1126-1132
Elfajar, A. B., Setiawan, B. D. dan Dewi, C. 2017.
Peramalan Jumlah Kunjungan Wisatawan Kota Batu
Menggunakan Metode Time Invariant Fuzzy Time
Series. Jurnal Pengembangan Teknologi Informasi
dan Ilmu Komputer. 1 (2). pp : 85-94.
Fauziah, N. Wahyuningsih, S., and Nasution, Y.N. 2016.
Peramalan Mengunakan Fuzzy Time Series Chen
(Studi Kasus: Curah Hujan Kota Samarinda). Jurnal
Statistika. 4(2). pp : 52 – 61.
Google Finance. www. Google.com/finance. Accesed on
August 10
th
, 2017.
Handayani, L., dan Anggriani, D. 2015. Perbandingan
Model Chen Dan Model Lee Pada Metode Fuzzy Time
Series Untuk Prediksi Harga Emas. Jurnal
Pseudocode. 2 (1). pp : 28 – 36.
Hansun, S. 2012. IHSG Data Forecasting Using Fuzzy
Time Series. Indonesian Journal Of Computer and
Cybernetics System. 6 (2) : 79 – 88.
Hasudungan, F. I., Umbara, R. F dan Triantoro, D. 2016.
Prediksi Harga Saham Dengan Metode Fuzzy Time
Series dan Metode Fuzzy Time Series-Genetic
Algorithm (Studi Kasus: PT Bank Mandiri (persero)
Tbk). e-Proceeding of Engineering : 3 (3). pp : 5372 -
5377.
Huarng, K.H. and Yu, K. 2006. The application of neural
networks to forecast fuzzy time series. Physica A:
Statistical Mechanics and its Applications. 363(2). pp
:481–491
Jilani, T. A., Burney, S. M. A., dan Ardil, C. 2007. Fuzzy
Metric Approach for Fuzzy Time Series Forecasting
Based on Frequency Density Based Partioning.
Proceedings of world journal academy of science,
engineering and technology, 23. pp : 333-338.
Rahmadiani, A., and Wiwik, A. 2012. Implementasi Fuzzy
Neural Network Pasien Poli Bedah di Rumah Sakit
Onkologi Surabaya. Jurnal Teknik ITS. 1 (1). pp : 403-
407.
Rukhansah, N., Muslim, M. A., and Arifudin, R. 2015.
Fuzzy Time Series Markov Chain Dalam Meramalkan
Harga Saham. Proceedings of the National Seminar on
Computer Science (SNIK 2015). pp : 309-321.
Song, Q. dan Chissom, B. S. 1993. Forecasting
Enrollments With Fuzzy Time Series - Part I. Fuzzy
Sets and Systems. 54. pp : 1-9.
Stevenson, M. dan Porter, J.E. 2009. Fuzzy Time Series
Forecasting Using Percentage Change as the Universe
of Discourse, World Academy of Science, Engineering
and Technology, 27(55). pp : 154-157.
Sullivan, J. and Woodall, W. H. 1994. A Comparison Of
Fuzzy Forecasting And Markov Modeling. Fuzzy Sets
and Systems. 64. pp: 279-293
Zulfikar, R. and Mayvita, P.A., 2017. Pengujian Metode
Fuzzy Time Series Chen dan Hsu Untuk Meramalkan
Nilai Indeks Bursa Saham Syariah Di Jakarta Islamic
Index (JII). WIGA-Jurnal Penelitian Ilmu
Ekonomi, 7(2). pp : 108-124.