4 CONCLUSIONS
1. Activation of low-rank coal of East
Kalimantan was evaluated by taking
different activators. The best result
were
obtained by using HCl with activated
carbon characteristics such as a moisture
content, ash content, volatile matter, fixed
carbon and iodine absorption number
respectively as follows 5.23%, 11.72%,
8.85%, 74.2% and 660.40 mg/g.
2.
Ash content and iodine absorption number
still below the standards referred to
Indonesian National Standard (SNI 06-
3730-1995).
ACKNOWLEDGEMENTS
The authors would like to acknowledge the
Department of Chemical Engineering, Polytechnic
State of Samarinda and PT.Sucofindo Samarinda for
the Proximate and Iodine Adsorption Number
Analysis.
REFERENCES
Bilal Khalid et.al., 2016. Effects of KOH Activation on
Surface Area, Porosity and Desalination
Performance
of Coconut Carbon Electrodes. Desalination and
Water Treatment Journal
57. pp. 2195–2202.
Demirbas, A., 2007. Utilization of Coal as a Source of
Chemical. Energy Sources : Part A : Recovery,
Utilization Environmental Effects. Sila Science,
Universite Mahallesi Trabzon, Turkey.
Dong-Su Kim, 2004.
Activated Carbon from Peach
Stones Using Phosphoric
Acid Activation at Medium
Temperatures.
Journal of Environmental Science
and Health Part A—Toxic/Hazardous Substances
& Environmental Engineering
Vol. A39. No. 5. pp.
1301–1318.
Department of Environmental Science
and Engineering
.
Ewha Womans University.
Korea.
Departemen Perindustrian dan Perdagangan, 2003. Syarat
Mutu dan Uji Arang Aktif SNI No. 06-3730-1995.
Balai Perindustrian dan Perdagangan.
Erawati and Fernando, 2018. Pengaruh Jenis Aktivator
dan Ukuran Karbon Aktif Terhadap Pembuatan
Adsorbent dari Serbuk Gergaji
kayu Sengon
(Paraserianthes Falcataria). Jurnal Integrasi Proses
Vol. 7. pp.
58-66. Unversitas Muhammadiyah
Surakarta.
Fen Li, Bo Yan, Yanping Zhang, Linhuan Zhang and Tao
Lei, 2014. Effect of activator on the structure and
desulphurization efficiency of sludge-activated carbon.
Environmental Technology. 35:20. pp. 2575-2581.
Kusdarini, E., Budianto, A. and Ghafarunnisa, 2017.
Produksi Karbon Aktif dari Batubara Bituminus
dengan Aktivasi Tunggal H
3
PO
4
, Kombinasi H
3
PO
4
-
NH
4
HCO
3
, dan Termal. Jurnal Reaktor UNDIP.
Maulana, G.G.R., Agustina, L. and Susi, S., 2017. Proses
Aktivasi Arang Aktif dari
Cangkang Kemiri
(Aleurites Moluccana) dengan Variasi Jenis dan
Konsentrasi Aktivator Kimia. Universitas Lambung
Mangkurat, Teknik
Industri Pertanian.
Maulina, S. and Iriansyah, M., 2018. Characteristics of
Activated Carbon Resulted From Pyrolysis of The Oil
Palm Fronds Powder. Universitas Sumatra Utara.
Teknik Kimia.
Muthusamy Karthikeyan, Wu Zhonghua and Arun S.
Mujumdar, 2009. Low-Rank Coal Drying
Technologies. Current Status and New Developments,
Drying Technology: An International Journal. 27:3. pp.
403-415.
Pehlivan, E. and Cetin, S., 2008. Application of Fly Ash
and Activated Carbon in the Removal of Cu
2+
and
Ni
2+
Ions from Aqueous Solutions. Energy Sources,
Part A: Recovery, Utilization, and Environmental
Effects. 30:13. pp. 1153-1165.
Rahim, M. and Indriyani, O.S., 2010. Pembuatan
Karbon Aktif dari Batubara Peringkat Rendah.
Jurnal Teknologi Media Perspektif. pp. 40-44.
Shawabkeh, R.A., Al-Harthi and Al-Ghamdi, 2014. The
Synthesis and Characterization of Microporous,
High
Surface Area Activated Carbon from Palm Seeds.
Energy Sources. Part A. 36:93–103.
Speight, J.G., 1994. The Chemistry and Technology of
Coal. Marcel Dekker. Inc. New York.
Tsai, et al., 2001. Characterization of Activated Carbons
Prepared From Sugarcane Bagasse By ZnCl
2
Activation. J.Environ.Sci.Health. B36(3). pp. 365 –
378.