Anderson, J. D. and Wendt, J. (1995). Computational fluid
dynamics, volume 206. Springer.
Beccali, M., Cellura, M., and Mistretta, M. (2003).
Decision-making in energy planning. application of
the electre method at regional level for the diffusion
of renewable energy technology. Renewable Energy,
28(13):2063–2087.
Bertalmio, M., Bertozzi, A. L., and Sapiro, G. (2001).
Navier-stokes, fluid dynamics, and image and video
inpainting. In Proceedings of the 2001 IEEE Com-
puter Society Conference, pages 355–362. IEEE.
Bhatia, H., Norgard, G., Pascucci, V., and Bremer, P.
(2013). The Helmholtz-Hodge Decomposition - A
Survey. IEEE Transactions on Visualization and Com-
puter Graphics, 19(8):1386–1404.
Cho, K., Meer, P., and Cabrera, J. (1997). Perfor-
mance assessment through bootstrap. IEEE Transac-
tions on Pattern Analysis and Machine Intelligence,
19(11):1185–1198.
Chorin, A. J. (1968). Numerical solution of the Navier-
Stokes equations. Mathematics of Computation,
22:745–762.
Chorin, A. J. and Marsden, J. E. (1993). A mathematical in-
troduction to fluid mechanics. Texts in Applied Math-
ematics. Springer-Verlag, 3rd edition.
Efron, B. (1979). Bootstrap Methods: Another Look at the
Jackknife. Annals of Statistics, 7:1–26.
Efros, A. A. and Freeman, W. T. (2001). Image quilting
for texture synthesis and transfer. In Proceedings of
the 28th annual conference on Computer graphics and
interactive techniques, pages 341–346. ACM.
Fu, X., You, H., and Fu, K. (2012). A Statistical Approach
to Detect Edges in SAR Images Based on Square Suc-
cessive Difference of Averages. IEEE Geoscience And
Remote Sensing Letters, 9(6):1094–1098.
Gao, H., Mandal, M. K., Guo, G., and Wan, J. (2010). Sin-
gular point detection using Discrete Hodge Helmholtz
Decomposition in fingerprint images. In ICASSP’10,
pages 1094–1097. IEEE.
Gonzalez, R. C. and Woods, R. E. (2006). Digital Image
Processing. Prentice-Hall, Inc.
Guo, Q., Mandal, M. K., Liu, G., and Kavanagh,
K. M. (2006). Cardiac video analysis using Hodge-
Helmholtz field decomposition. Computers in Biology
and Medicine, 36(1):1–20.
Honarkhah, M. and Caers, J. (2010). Stochastic Simulation
of Patterns Using Distance-Based Pattern Modeling.
Mathematical Geosciences, 42(5):487–517.
Kalnay, E. (2003). Atmospheric modeling, data assimila-
tion and predictability. Cambridge university press.
Kruskal, J. B. (1964). Multidimensional scaling by optimiz-
ing goodness of fit to a nonmetric hypothesis. IEEE
Transactions on Visualization and Computer Graph-
ics, 29(1):1–27.
Lall, U., Devineni, N., and Kaheil, Y. (2016). An empiri-
cal, nonparametric simulator for multivariate random
variables with differing marginal densities and nonlin-
ear dependence with hydroclimatic applications. Risk
Analysis, 36(1):57–73.
Lantu
´
ejoul, C. (2013). Geostatistical simulation: models
and algorithms. Springer Science & Business Media.
Liew, K. J., Ramli, A., and Majid, A. A. (2016). Searching
for the optimum value of the smoothing parameter for
a radial basis function surface with feature area by us-
ing the bootstrap method. Computational and Applied
Mathematics, pages 1–16.
Luo, C., Safa, I., and Wang, Y. (2012). Feature-aware
streamline generation of planar vector fields via topo-
logical methods. Computers & Graphics, 36(6):754–
766.
Mariethoz, G. and Caers, J. (2014). Multiple-point geo-
statistics: stochastic modeling with training images.
John Wiley & Sons.
Mariethoz, G. and Lefebvre, S. (2014). Bridges between
multiple-point geostatistics and texture synthesis: Re-
view and guidelines for future research. Computers &
Geosciences, 66:66–80.
Oliver, M. and Webster, R. (2014). A tutorial guide to geo-
statistics: Computing and modelling variograms and
kriging. Catena, 113:56–69.
Palit, B. (2005). Application of the Hodge Helmholtz De-
composition to Video and Image Processing. Master’s
thesis, University of Alberta.
Pascucci, V., Bremer, P.-T., and Bhatia, H. (2014). The
Natural Helmholtz-Hodge Decomposition For Open-
Boundary Flow Analysis. IEEE Transactions on Vi-
sualization and Computer Graphics, 99(PrePrints):1–
11.
Petronetto, F., Paiva, A., Lage, M., Tavares, G., Lopes, H.,
and Lewiner, T. (2010). Meshless Helmholtz-Hodge
Decomposition. IEEE Transactions on Visualization
and Computer Graphics, 16(2):338–349.
Polthier, K. and Preuß, E. (2003). Identifying Vector Field
Singularities Using a Discrete Hodge Decomposition.
In Visualization and Mathematics III, pages 113–134.
Springer Berlin Heidelberg.
Popescu, R., Deodatis, G., and Prevost, J. H. (1998). Simu-
lation of homogeneous nongaussian stochastic vector
fields. Probabilistic Engineering Mechanics, 13(1):1–
13.
Ribeiro, P. C., de Campos Velho, H. F., and Lopes, H.
(2016). Helmholtz-hodge decomposition and the anal-
ysis of 2d vector field ensembles. Computers &
Graphics, 55:80–96.
Tong, Y., Lombeyda, S., Hirani, A. N., and Desbrun, M.
(2003). Discrete Multiscale Vector Field Decomposi-
tion. In ACM SIGGRAPH 2003 Papers, pages 445–
452. ACM.
Wackerly, D. D., Mendenhall, W., and Scheaffer, R. L.
(2008). Mathematical Statistics with Applications.
Thomson.
Wang, H. and Deng, J. (2014). Feature extraction of com-
plex ocean flow field using the helmholtz-hodge de-
composition. In 2013 IEEE International Confer-
ence on Multimedia and Expo Workshops, pages 1–6.
IEEE.
Wang, Z., Wang, X., and Ji, Q. (2014). Learning with hid-
den information. In ICPR, pages 238–243.
Wasserman, L. (2004). All of Statistics: A Concise Course
in Statistical Inference. Springer.
Xiu, D. (2009). Fast numerical methods for stochastic com-
putations: a review. Communications in computa-
tional physics, 5(2-4):242–272.
Bootstrapping Vector Fields
29