ACKNOWLEDGEMENT
This publication was supported by the project
LO1506 of the Czech Ministry of Education, Youth
and Sports under the program NPU I.
REFERENCES
Bay, H., Ess, A., Tuytelaars, T., and Gool, L. V. (2008).
Speeded-up robust features (surf). Computer Vision
and Image Understing, 110(3):346–359.
Drost, B., Ulrich, M., Navab, N., and Ilic, S. (2010). Model
globally, match locally: Efficient and robust 3d object
recognition. In 2010 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition,
pages 998–1005.
Elbaz, G., Avraham, T., and Fischer, A. (2017). 3d point
cloud registration for localization using a deep neu-
ral network auto-encoder. In 2017 IEEE Conference
on Computer Vision and Pattern Recognition (CVPR),
pages 2472–2481.
Foulds, H. and Drevin, G. R. (2011). Three-dimensional
shape descriptors and matching procedures. In WSCG
’2011: The 19th International Conference in Cen-
tral Europe on Computer Graphics, Visualization and
Computer Vision, p. 1-8., pages 1–8.
Gelfand, N., Mitra, N. J., Guibas, L. J., and Pottmann, H.
(2005). Robust global registration. In Proceedings of
the Third Eurographics Symposium on Geometry Pro-
cessing, SGP ’05, Aire-la-Ville, Switzerland, Switzer-
land. Eurographics Association.
Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., and
Kwok, N. M. (2016). A comprehensive performance
evaluation of 3d local feature descriptors. Interna-
tional Journal of Computer Vision, 116(1):66–89.
Holz, D., Ichim, A. E., Tombari, F., Rusu, R. B., and
Behnke, S. (2015). Registration with the point cloud
library: A modular framework for aligning in 3-d.
IEEE Robotics Automation Magazine, 22(4):110–124.
Jiaqi, Y., Zhiguo, C., and Qian, Z. (2016). A fast and robust
local descriptor for 3d point cloud registration. Infor-
mation Sciences, 346-347:163 – 179.
Johnson, A. E. and Hebert, M. (1999). Using spin images
for efficient object recognition in cluttered 3d scenes.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 21(5):433–449.
Knopp, J., Prasad, M., Willems, G., Timofte, R., and Gool,
L. V. (2010). Hough transform and 3d surf for robust
three dimensional classification. In Proceedings of the
11th European Conference on Computer Vision: Part
VI, ECCV’10, pages 589–602. Springer Berlin Hei-
delberg.
Lin, B., Wang, F., Sun, Y., Qu, W., Chen, Z., and Zhang,
S. (2017). Boundary points based scale invariant 3d
point feature. Journal of Visual Communication and
Image Representation, 48:136 – 148.
Liu, H., Yan, J., and Zhang, D. (2006). A neural net-
work strategy for 3d surface registration. In Compu-
tational Science and Its Applications - ICCSA 2006,
pages 528–536. Springer Berlin Heidelberg.
Loop, C. (1987). Smooth Subdivision Surfaces Based on
Triangles. PhD thesis, Department of Mathematics,
The University of Utah, Masters Thesis.
Lowe, D. G. (2004). Distinctive image features from scale-
invariant keypoints. International Journal of Com-
puter Vision, 60(2):91–110.
Maximo, A., Patro, R., Varshney, A., and Farias, R. (2011).
A robust and rotationally invariant local surface de-
scriptor with applications to non-local mesh process-
ing. Graphical Models, 73(5):231 – 242.
Pottmann, H., Huang, Q. X., Yang, Y. L., and Hu, S. M.
(2006). Geometry and convergence analysis of al-
gorithms for registration of 3d shapes. International
Journal of Computer Vision, 67(3):277–296.
Pottmann, H., Wallner, J., Yang, Y. L., Lai, Y., and Hu,
S. M. (2007). Principal curvatures from the integral
invariant viewpoint. Computer Aided Geometric De-
sign, 24(8 - 9):428 – 442.
Rusu, R. B., Blodow, N., and Beetz, M. (2009). Fast
point feature histograms (fpfh) for 3d registration. In
Robotics and Automation, 2009. ICRA ’09. IEEE In-
ternational Conference on Robotics and Automation,
pages 3212–3217.
Tombari, F., Salti, S., and Stefano, L. D. (2010). Unique
signatures of histograms for local surface descrip-
tion. In Proceedings of the 11th European Conference
on Computer Vision Conference on Computer Vision:
Part III, ECCV’10, pages 356–369. Springer Berlin
Heidelberg.
V
´
a
ˇ
sa, L., Van
ˇ
e
ˇ
cek, P., Prantl, M., Skorkovsk
´
a, V., Mart
´
ınek,
P., and Kolingerov
´
a, I. (2016). Mesh statistics for ro-
bust curvature estimation. Computer Graphics Forum,
35(5):271–280.
Zhou, Q. Y., Park, J., and Koltun, V. (2016). Fast global
registration. In Computer Vision – ECCV 2016, pages
766–782, Cham. Springer International Publishing.
GRAPP 2019 - 14th International Conference on Computer Graphics Theory and Applications
192